Abstract:Skin lesions are an increasingly significant medical concern, varying widely in severity from benign to cancerous. Accurate diagnosis is essential for ensuring timely and appropriate treatment. This study examines the implementation of deep learning methods to assist in the diagnosis of skin lesions using the HAM10000 dataset, which contains seven distinct types of lesions. First, we evaluated three pre-trained models: MobileNetV2, ResNet18, and VGG11, achieving accuracies of 0.798, 0.802, and 0.805, respectively. To further enhance classification accuracy, we developed ensemble models employing max voting, average voting, and stacking, resulting in accuracies of 0.803, 0.82, and 0.83. Building on the best-performing ensemble learning model, stacking, we developed our proposed model, SkinNet, which incorporates a customized architecture and fine-tuning, achieving an accuracy of 0.867 and an AUC of 0.96. This substantial improvement over individual models demonstrates the effectiveness of ensemble learning in improving skin lesion classification.
Abstract:Recent advancements in large language models (LLMs) have opened new avenues for enhancing text classification efficiency in political science, surpassing traditional machine learning methods that often require extensive feature engineering, human labeling, and task-specific training. However, their effectiveness in achieving high classification accuracy remains questionable. This paper introduces a three-stage in-context learning approach that leverages LLMs to improve classification accuracy while minimizing experimental costs. Our method incorporates automatic enhanced prompt generation, adaptive exemplar selection, and a consensus mechanism that resolves discrepancies between two weaker LLMs, refined by an advanced LLM. We validate our approach using datasets from the BBC news reports, Kavanaugh Supreme Court confirmation, and 2018 election campaign ads. The results show significant improvements in classification F1 score (+0.36 for zero-shot classification) with manageable economic costs (-78% compared with human labeling), demonstrating that our method effectively addresses the limitations of traditional machine learning while offering a scalable and reliable solution for text analysis in political science.
Abstract:In this study, we examine the efficacy of post-hoc local attribution methods in identifying features with predictive power from irrelevant ones in domains characterized by a low signal-to-noise ratio (SNR), a common scenario in real-world machine learning applications. We developed synthetic datasets encompassing symbolic functional, image, and audio data, incorporating a benchmark on the {\it (Model \(\times\) Attribution\(\times\) Noise Condition)} triplet. By rigorously testing various classic models trained from scratch, we gained valuable insights into the performance of these attribution methods in multiple conditions. Based on these findings, we introduce a novel extension to the notable recursive feature elimination (RFE) algorithm, enhancing its applicability for neural networks. Our experiments highlight its strengths in prediction and feature selection, alongside limitations in scalability. Further details and additional minor findings are included in the appendix, with extensive discussions. The codes and resources are available at \href{https://github.com/geshijoker/ChaosMining/}{URL}.
Abstract:Move structures have been studied in English for Specific Purposes (ESP) and English for Academic Purposes (EAP) for decades. However, there are few move annotation corpora for Research Article (RA) abstracts. In this paper, we introduce RAAMove, a comprehensive multi-domain corpus dedicated to the annotation of move structures in RA abstracts. The primary objective of RAAMove is to facilitate move analysis and automatic move identification. This paper provides a thorough discussion of the corpus construction process, including the scheme, data collection, annotation guidelines, and annotation procedures. The corpus is constructed through two stages: initially, expert annotators manually annotate high-quality data; subsequently, based on the human-annotated data, a BERT-based model is employed for automatic annotation with the help of experts' modification. The result is a large-scale and high-quality corpus comprising 33,988 annotated instances. We also conduct preliminary move identification experiments using the BERT-based model to verify the effectiveness of the proposed corpus and model. The annotated corpus is available for academic research purposes and can serve as essential resources for move analysis, English language teaching and writing, as well as move/discourse-related tasks in Natural Language Processing (NLP).
Abstract:Dynamic scene understanding is one of the most conspicuous field of interest among computer vision community. In order to enhance dynamic scene understanding, pixel-wise segmentation with neural networks is widely accepted. The latest researches on pixel-wise segmentation combined semantic and motion information and produced good performance. In this work, we propose a state of art architecture of neural networks to accurately and efficiently get the moving object proposals (MOP). We first train an unsupervised convolutional neural network (UnFlow) to generate optical flow estimation. Then we render the output of optical flow net to a fully convolutional SegNet model. The main contribution of our work is (1) Fine-tuning the pretrained optical flow model on the brand new DAVIS Dataset; (2) Leveraging fully convolutional neural networks with Encoder-Decoder architecture to segment objects. We developed the codes with TensorFlow, and executed the training and evaluation processes on an AWS EC2 instance.
Abstract:Despite the recent emergence of video captioning models, how to generate the text description with specific entity names and fine-grained actions is far from being solved, which however has great applications such as basketball live text broadcast. In this paper, a new multimodal knowledge supported basketball benchmark for video captioning is proposed. Specifically, we construct a Multimodal Basketball Game Knowledge Graph (MbgKG) to provide knowledge beyond videos. Then, a Multimodal Basketball Game Video Captioning (MbgVC) dataset that contains 9 types of fine-grained shooting events and 286 players' knowledge (i.e., images and names) is constructed based on MbgKG. We develop a novel framework in the encoder-decoder form named Entity-Aware Captioner (EAC) for basketball live text broadcast. The temporal information in video is encoded by introducing the bi-directional GRU (Bi-GRU) module. And the multi-head self-attention module is utilized to model the relationships among the players and select the key players. Besides, we propose a new performance evaluation metric named Game Description Score (GDS), which measures not only the linguistic performance but also the accuracy of the names prediction. Extensive experiments on MbgVC dataset demonstrate that EAC effectively leverages external knowledge and outperforms advanced video captioning models. The proposed benchmark and corresponding codes will be publicly available soon.
Abstract:Numerous approaches have attempted to interpret deep neural networks (DNNs) by attributing the prediction of DNN to its input features. One of the well-studied attribution methods is Integrated Gradients (IG). Specifically, the choice of baselines for IG is a critical consideration for generating meaningful and unbiased explanations for model predictions in different scenarios. However, current practice of exploiting a single baseline fails to fulfill this ambition, thus demanding multiple baselines. Fortunately, the inherent connection between IG and Aumann-Shapley Value forms a unique perspective to rethink the design of baselines. Under certain hypothesis, we theoretically analyse that a set of baseline aligns with the coalitions in Shapley Value. Thus, we propose a novel baseline construction method called Shapley Integrated Gradients (SIG) that searches for a set of baselines by proportional sampling to partly simulate the computation path of Shapley Value. Simulations on GridWorld show that SIG approximates the proportion of Shapley Values. Furthermore, experiments conducted on various image tasks demonstrate that compared to IG using other baseline methods, SIG exhibits an improved estimation of feature's contribution, offers more consistent explanations across diverse applications, and is generic to distinct data types or instances with insignificant computational overhead.
Abstract:Event extraction aims to recognize pre-defined event triggers and arguments from texts, which suffer from the lack of high-quality annotations. In most NLP applications, involving a large scale of synthetic training data is a practical and effective approach to alleviate the problem of data scarcity. However, when applying to the task of event extraction, recent data augmentation methods often neglect the problem of grammatical incorrectness, structure misalignment, and semantic drifting, leading to unsatisfactory performances. In order to solve these problems, we propose a denoised structure-to-text augmentation framework for event extraction DAEE, which generates additional training data through the knowledge-based structure-to-text generation model and selects the effective subset from the generated data iteratively with a deep reinforcement learning agent. Experimental results on several datasets demonstrate that the proposed method generates more diverse text representations for event extraction and achieves comparable results with the state-of-the-art.
Abstract:Most existing group activity recognition methods construct spatial-temporal relations merely based on visual representation. Some methods introduce extra knowledge, such as action labels, to build semantic relations and use them to refine the visual presentation. However, the knowledge they explored just stay at the semantic-level, which is insufficient for pursing notable accuracy. In this paper, we propose to exploit knowledge concretization for the group activity recognition, and develop a novel Knowledge Augmented Relation Inference framework that can effectively use the concretized knowledge to improve the individual representations. Specifically, the framework consists of a Visual Representation Module to extract individual appearance features, a Knowledge Augmented Semantic Relation Module explore semantic representations of individual actions, and a Knowledge-Semantic-Visual Interaction Module aims to integrate visual and semantic information by the knowledge. Benefiting from these modules, the proposed framework can utilize knowledge to enhance the relation inference process and the individual representations, thus improving the performance of group activity recognition. Experimental results on two public datasets show that the proposed framework achieves competitive performance compared with state-of-the-art methods.
Abstract:We consider event extraction in a generative manner with template-based conditional generation. Although there is a rising trend of casting the task of event extraction as a sequence generation problem with prompts, these generation-based methods have two significant challenges, including using suboptimal prompts and static event type information. In this paper, we propose a generative template-based event extraction method with dynamic prefix (GTEE-DynPref) by integrating context information with type-specific prefixes to learn a context-specific prefix for each context. Experimental results show that our model achieves competitive results with the state-of-the-art classification-based model OneIE on ACE 2005 and achieves the best performances on ERE. Additionally, our model is proven to be portable to new types of events effectively.