Abstract:As data-driven and AI-based decision making gains widespread adoption in most disciplines, it is crucial that both data privacy and decision fairness are appropriately addressed. While differential privacy (DP) provides a robust framework for guaranteeing privacy and several widely accepted methods have been proposed for improving fairness, the vast majority of existing literature treats the two concerns independently. For methods that do consider privacy and fairness simultaneously, they often only apply to a specific machine learning task, limiting their generalizability. In response, we introduce SAFES, a Sequential PrivAcy and Fairness Enhancing data Synthesis procedure that sequentially combines DP data synthesis with a fairness-aware data transformation. SAFES allows full control over the privacy-fairness-utility trade-off via tunable privacy and fairness parameters. We illustrate SAFES by combining AIM, a graphical model-based DP data synthesizer, with a popular fairness-aware data pre-processing transformation. Empirical evaluations on the Adult and COMPAS datasets demonstrate that for reasonable privacy loss, SAFES-generated synthetic data achieve significantly improved fairness metrics with relatively low utility loss.
Abstract:Satellite imagery, due to its long-range imaging, brings with it a variety of scale-preferred tasks, such as the detection of tiny/small objects, making the precise localization and detection of small objects of interest a challenging task. In this article, we design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction. Renormalized connection (RC) on the KDN enables ``synergistic focusing'' of multi-scale features. Based on our observations of KDN, we abstract a class of RCs with different connection strengths, called n21C, and generalize it to FPN-based multi-branch detectors. In a series of FPN experiments on the scale-preferred tasks, we found that the ``divide-and-conquer'' idea of FPN severely hampers the detector's learning in the right direction due to the large number of large-scale negative samples and interference from background noise. Moreover, these negative samples cannot be eliminated by the focal loss function. The RCs extends the multi-level feature's ``divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks, and enables synergistic effects of multi-level features on the specific learning goal. In addition, interference activations in two aspects are greatly reduced and the detector learns in a more correct direction. Extensive experiments of 17 well-designed detection architectures embedded with n21s on five different levels of scale-preferred tasks validate the effectiveness and efficiency of the RCs. Especially the simplest linear form of RC, E421C performs well in all tasks and it satisfies the scaling property of RGT. We hope that our approach will transfer a large number of well-designed detectors from the computer vision community to the remote sensing community.
Abstract:Despite the promising performance of current video segmentation models on existing benchmarks, these models still struggle with complex scenes. In this paper, we introduce the 6th Large-scale Video Object Segmentation (LSVOS) challenge in conjunction with ECCV 2024 workshop. This year's challenge includes two tasks: Video Object Segmentation (VOS) and Referring Video Object Segmentation (RVOS). In this year, we replace the classic YouTube-VOS and YouTube-RVOS benchmark with latest datasets MOSE, LVOS, and MeViS to assess VOS under more challenging complex environments. This year's challenge attracted 129 registered teams from more than 20 institutes across over 8 countries. This report include the challenge and dataset introduction, and the methods used by top 7 teams in two tracks. More details can be found in our homepage https://lsvos.github.io/.
Abstract:Video object segmentation is a challenging task that serves as the cornerstone of numerous downstream applications, including video editing and autonomous driving. In this technical report, we briefly introduce the solution of our team "yuanjie" for video object segmentation in the 6-th LSVOS Challenge VOS Track at ECCV 2024. We believe that our proposed CSS-Segment will perform better in videos of complex object motion and long-term presentation. In this report, we successfully validated the effectiveness of the CSS-Segment in video object segmentation. Finally, our method achieved a J\&F score of 80.84 in and test phases, and ultimately ranked 2nd in the 6-th LSVOS Challenge VOS Track at ECCV 2024.
Abstract:We introduce GaussianOcc, a systematic method that investigates the two usages of Gaussian splatting for fully self-supervised and efficient 3D occupancy estimation in surround views. First, traditional methods for self-supervised 3D occupancy estimation still require ground truth 6D poses from sensors during training. To address this limitation, we propose Gaussian Splatting for Projection (GSP) module to provide accurate scale information for fully self-supervised training from adjacent view projection. Additionally, existing methods rely on volume rendering for final 3D voxel representation learning using 2D signals (depth maps, semantic maps), which is both time-consuming and less effective. We propose Gaussian Splatting from Voxel space (GSV) to leverage the fast rendering properties of Gaussian splatting. As a result, the proposed GaussianOcc method enables fully self-supervised (no ground truth pose) 3D occupancy estimation in competitive performance with low computational cost (2.7 times faster in training and 5 times faster in rendering).
Abstract:Understanding 3D scenes is a crucial challenge in computer vision research with applications spanning multiple domains. Recent advancements in distilling 2D vision-language foundation models into neural fields, like NeRF and 3DGS, enables open-vocabulary segmentation of 3D scenes from 2D multi-view images without the need for precise 3D annotations. While effective, however, the per-pixel distillation of high-dimensional CLIP features introduces ambiguity and necessitates complex regularization strategies, adding inefficiencies during training. This paper presents MaskField, which enables fast and efficient 3D open-vocabulary segmentation with neural fields under weak supervision. Unlike previous methods, MaskField distills masks rather than dense high-dimensional CLIP features. MaskFields employ neural fields as binary mask generators and supervise them with masks generated by SAM and classified by coarse CLIP features. MaskField overcomes the ambiguous object boundaries by naturally introducing SAM segmented object shapes without extra regularization during training. By circumventing the direct handling of high-dimensional CLIP features during training, MaskField is particularly compatible with explicit scene representations like 3DGS. Our extensive experiments show that MaskField not only surpasses prior state-of-the-art methods but also achieves remarkably fast convergence, outperforming previous methods with just 5 minutes of training. We hope that MaskField will inspire further exploration into how neural fields can be trained to comprehend 3D scenes from 2D models.
Abstract:Micro-expressions (MEs) are subtle facial movements that occur spontaneously when people try to conceal the real emotions. Micro-expression recognition (MER) is crucial in many fields, including criminal analysis and psychotherapy. However, MER is challenging since MEs have low intensity and ME datasets are small in size. To this end, a three-stream temporal-shift attention network based on self-knowledge distillation (SKD-TSTSAN) is proposed in this paper. Firstly, to address the low intensity of ME muscle movements, we utilize learning-based motion magnification modules to enhance the intensity of ME muscle movements. Secondly, we employ efficient channel attention (ECA) modules in the local-spatial stream to make the network focus on facial regions that are highly relevant to MEs. In addition, temporal shift modules (TSMs) are used in the dynamic-temporal stream, which enables temporal modeling with no additional parameters by mixing ME motion information from two different temporal domains. Furthermore, we introduce self-knowledge distillation (SKD) into the MER task by introducing auxiliary classifiers and using the deepest section of the network for supervision, encouraging all blocks to fully explore the features of the training set. Finally, extensive experiments are conducted on four ME datasets: CASME II, SAMM, MMEW, and CAS(ME)3. The experimental results demonstrate that our SKD-TSTSAN outperforms other existing methods and achieves new state-of-the-art performance. Our code will be available at https://github.com/GuanghaoZhu663/SKD-TSTSAN.
Abstract:The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies. By leveraging the principles of physics to inform and enhance deep learning models, we can develop more robust and accurate vision systems. Physics-based vision aims to invert the processes to recover scene properties such as shape, reflectance, light distribution, and medium properties from images. In recent years, deep learning has shown promising improvements for various vision tasks, and when combined with physics-based vision, these approaches can enhance the robustness and accuracy of vision systems. This technical report summarizes the outcomes of the Physics-Based Vision Meets Deep Learning (PBDL) 2024 challenge, held in CVPR 2024 workshop. The challenge consisted of eight tracks, focusing on Low-Light Enhancement and Detection as well as High Dynamic Range (HDR) Imaging. This report details the objectives, methodologies, and results of each track, highlighting the top-performing solutions and their innovative approaches.
Abstract:Neural Radiance Fields (NeRF) have been successfully applied in various aerial scenes, yet they face challenges with sparse views due to limited supervision. The acquisition of dense aerial views is often prohibitive, as unmanned aerial vehicles (UAVs) may encounter constraints in perspective range and energy constraints. In this work, we introduce Multiplane Prior guided NeRF (MPNeRF), a novel approach tailored for few-shot aerial scene rendering-marking a pioneering effort in this domain. Our key insight is that the intrinsic geometric regularities specific to aerial imagery could be leveraged to enhance NeRF in sparse aerial scenes. By investigating NeRF's and Multiplane Image (MPI)'s behavior, we propose to guide the training process of NeRF with a Multiplane Prior. The proposed Multiplane Prior draws upon MPI's benefits and incorporates advanced image comprehension through a SwinV2 Transformer, pre-trained via SimMIM. Our extensive experiments demonstrate that MPNeRF outperforms existing state-of-the-art methods applied in non-aerial contexts, by tripling the performance in SSIM and LPIPS even with three views available. We hope our work offers insights into the development of NeRF-based applications in aerial scenes with limited data.
Abstract:Existing efforts are dedicated to designing many topologies and graph-aware strategies for the graph Transformer, which greatly improve the model's representation capabilities. However, manually determining the suitable Transformer architecture for a specific graph dataset or task requires extensive expert knowledge and laborious trials. This paper proposes an evolutionary graph Transformer architecture search framework (EGTAS) to automate the construction of strong graph Transformers. We build a comprehensive graph Transformer search space with the micro-level and macro-level designs. EGTAS evolves graph Transformer topologies at the macro level and graph-aware strategies at the micro level. Furthermore, a surrogate model based on generic architectural coding is proposed to directly predict the performance of graph Transformers, substantially reducing the evaluation cost of evolutionary search. We demonstrate the efficacy of EGTAS across a range of graph-level and node-level tasks, encompassing both small-scale and large-scale graph datasets. Experimental results and ablation studies show that EGTAS can construct high-performance architectures that rival state-of-the-art manual and automated baselines.