Abstract:Recent analysis on the training dynamics of Transformers has unveiled an interesting characteristic: the training loss plateaus for a significant number of training steps, and then suddenly (and sharply) drops to near--optimal values. To understand this phenomenon in depth, we formulate the low-rank matrix completion problem as a masked language modeling (MLM) task, and show that it is possible to train a BERT model to solve this task to low error. Furthermore, the loss curve shows a plateau early in training followed by a sudden drop to near-optimal values, despite no changes in the training procedure or hyper-parameters. To gain interpretability insights into this sudden drop, we examine the model's predictions, attention heads, and hidden states before and after this transition. Concretely, we observe that (a) the model transitions from simply copying the masked input to accurately predicting the masked entries; (b) the attention heads transition to interpretable patterns relevant to the task; and (c) the embeddings and hidden states encode information relevant to the problem. We also analyze the training dynamics of individual model components to understand the sudden drop in loss.
Abstract:Knowledge Editing (KE) algorithms alter models' internal weights to perform targeted updates to incorrect, outdated, or otherwise unwanted factual associations. In order to better define the possibilities and limitations of these approaches, recent work has shown that applying KE can adversely affect models' factual recall accuracy and diminish their general reasoning abilities. While these studies give broad insights into the potential harms of KE algorithms, e.g., via performance evaluations on benchmarks, we argue little is understood as to why such destructive failures occur. Is it possible KE methods distort representations of concepts beyond the targeted fact, hence hampering abilities at broad? If so, what is the extent of this distortion? To take a step towards addressing such questions, we define a novel synthetic task wherein a Transformer is trained from scratch to internalize a ``structured'' knowledge graph. The structure enforces relationships between entities of the graph, such that editing a factual association has "trickling effects" on other entities in the graph (e.g., altering X's parent is Y to Z affects who X's siblings' parent is). Through evaluations of edited models and analysis of extracted representations, we show that KE inadvertently affects representations of entities beyond the targeted one, distorting relevant structures that allow a model to infer unseen knowledge about an entity. We call this phenomenon representation shattering and demonstrate that it results in degradation of factual recall and reasoning performance more broadly. To corroborate our findings in a more naturalistic setup, we perform preliminary experiments with a pretrained GPT-2-XL model and reproduce the representation shattering effect therein as well. Overall, our work yields a precise mechanistic hypothesis to explain why KE has adverse effects on model capabilities.
Abstract:Representation engineering methods have recently shown promise for enabling efficient steering of model behavior. However, evaluation pipelines for these methods have primarily relied on subjective demonstrations, instead of quantitative, objective metrics. We aim to take a step towards addressing this issue by advocating for four properties missing from current evaluations: (i) contexts sufficiently similar to downstream tasks should be used for assessing intervention quality; (ii) model likelihoods should be accounted for; (iii) evaluations should allow for standardized comparisons across different target behaviors; and (iv) baseline comparisons should be offered. We introduce an evaluation pipeline grounded in these criteria, offering both a quantitative and visual analysis of how effectively a given method works. We use this pipeline to evaluate two representation engineering methods on how effectively they can steer behaviors such as truthfulness and corrigibility, finding that some interventions are less effective than previously reported.
Abstract:Autoencoders have been used for finding interpretable and disentangled features underlying neural network representations in both image and text domains. While the efficacy and pitfalls of such methods are well-studied in vision, there is a lack of corresponding results, both qualitative and quantitative, for the text domain. We aim to address this gap by training sparse autoencoders (SAEs) on a synthetic testbed of formal languages. Specifically, we train SAEs on the hidden representations of models trained on formal languages (Dyck-2, Expr, and English PCFG) under a wide variety of hyperparameter settings, finding interpretable latents often emerge in the features learned by our SAEs. However, similar to vision, we find performance turns out to be highly sensitive to inductive biases of the training pipeline. Moreover, we show latents correlating to certain features of the input do not always induce a causal impact on model's computation. We thus argue that causality has to become a central target in SAE training: learning of causal features should be incentivized from the ground-up. Motivated by this, we propose and perform preliminary investigations for an approach that promotes learning of causally relevant features in our formal language setting.
Abstract:Prior work has shown that text-conditioned diffusion models can learn to identify and manipulate primitive concepts underlying a compositional data-generating process, enabling generalization to entirely novel, out-of-distribution compositions. Beyond performance evaluations, these studies develop a rich empirical phenomenology of learning dynamics, showing that models generalize sequentially, respecting the compositional hierarchy of the data-generating process. Moreover, concept-centric structures within the data significantly influence a model's speed of learning the ability to manipulate a concept. In this paper, we aim to better characterize these empirical results from a theoretical standpoint. Specifically, we propose an abstraction of prior work's compositional generalization problem by introducing a structured identity mapping (SIM) task, where a model is trained to learn the identity mapping on a Gaussian mixture with structurally organized centroids. We mathematically analyze the learning dynamics of neural networks trained on this SIM task and show that, despite its simplicity, SIM's learning dynamics capture and help explain key empirical observations on compositional generalization with diffusion models identified in prior work. Our theory also offers several new insights -- e.g., we find a novel mechanism for non-monotonic learning dynamics of test loss in early phases of training. We validate our new predictions by training a text-conditioned diffusion model, bridging our simplified framework and complex generative models. Overall, this work establishes the SIM task as a meaningful theoretical abstraction of concept learning dynamics in modern generative models.
Abstract:Increase in data, size, or compute can lead to sudden learning of specific capabilities by a neural network -- a phenomenon often called "emergence". Beyond scientific understanding, establishing the causal factors underlying such emergent capabilities is crucial to enable risk regulation frameworks for AI. In this work, we seek inspiration from study of emergent properties in other fields and propose a phenomenological definition for the concept in the context of neural networks. Our definition implicates the acquisition of specific structures underlying the data-generating process as a cause of sudden performance growth for specific, narrower tasks. We empirically investigate this definition by proposing an experimental system grounded in a context-sensitive formal language and find that Transformers trained to perform tasks on top of strings from this language indeed exhibit emergent capabilities. Specifically, we show that once the language's underlying grammar and context-sensitivity inducing structures are learned by the model, performance on narrower tasks suddenly begins to improve. We then analogize our network's learning dynamics with the process of percolation on a bipartite graph, establishing a formal phase transition model that predicts the shift in the point of emergence observed in experiment when changing the data structure. Overall, our experimental and theoretical frameworks yield a step towards better defining, characterizing, and predicting emergence in neural networks.
Abstract:Safety fine-tuning helps align Large Language Models (LLMs) with human preferences for their safe deployment. To better understand the underlying factors that make models safe via safety fine-tuning, we design a synthetic data generation framework that captures salient aspects of an unsafe input by modeling the interaction between the task the model is asked to perform (e.g., "design") versus the specific concepts the task is asked to be performed upon (e.g., a "cycle" vs. a "bomb"). Using this, we investigate three well-known safety fine-tuning methods -- supervised safety fine-tuning, direct preference optimization, and unlearning -- and provide significant evidence demonstrating that these methods minimally transform MLP weights to specifically align unsafe inputs into its weights' null space. This yields a clustering of inputs based on whether the model deems them safe or not. Correspondingly, when an adversarial input (e.g., a jailbreak) is provided, its activations are closer to safer samples, leading to the model processing such an input as if it were safe. We validate our findings, wherever possible, on real-world models -- specifically, Llama-2 7B and Llama-3 8B.
Abstract:Safety fine-tuning helps align Large Language Models (LLMs) with human preferences for their safe deployment. To better understand the underlying factors that make models safe via safety fine-tuning, we design a synthetic data generation framework that captures salient aspects of an unsafe input by modeling the interaction between the task the model is asked to perform (e.g., ``design'') versus the specific concepts the task is asked to be performed upon (e.g., a ``cycle'' vs. a ``bomb''). Using this, we investigate three well-known safety fine-tuning methods -- supervised safety fine-tuning, direct preference optimization, and unlearning -- and provide significant evidence demonstrating that these methods minimally transform MLP weights to specifically align unsafe inputs into its weights' null space. This yields a clustering of inputs based on whether the model deems them safe or not. Correspondingly, when an adversarial input (e.g., a jailbreak) is provided, its activations are closer to safer samples, leading to the model processing such an input as if it were safe. We validate our findings, wherever possible, on real-world models -- specifically, Llama-2 7B and Llama-3 8B.
Abstract:Modern generative models demonstrate impressive capabilities, likely stemming from an ability to identify and manipulate abstract concepts underlying their training data. However, fundamental questions remain: what determines the concepts a model learns, the order in which it learns them, and its ability to manipulate those concepts? To address these questions, we propose analyzing a model's learning dynamics via a framework we call the concept space, where each axis represents an independent concept underlying the data generating process. By characterizing learning dynamics in this space, we identify how the speed at which a concept is learned, and hence the order of concept learning, is controlled by properties of the data we term concept signal. Further, we observe moments of sudden turns in the direction of a model's learning dynamics in concept space. Surprisingly, these points precisely correspond to the emergence of hidden capabilities, i.e., where latent interventions show the model possesses the capability to manipulate a concept, but these capabilities cannot yet be elicited via naive input prompting. While our results focus on synthetically defined toy datasets, we hypothesize a general claim on emergence of hidden capabilities may hold: generative models possess latent capabilities that emerge suddenly and consistently during training, though a model might not exhibit these capabilities under naive input prompting.
Abstract:This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are organized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose $200+$ concrete research questions.