IRIT
Abstract:Sparse Autoencoders (SAEs) have emerged as a powerful framework for machine learning interpretability, enabling the unsupervised decomposition of model representations into a dictionary of abstract, human-interpretable concepts. However, we reveal a fundamental limitation: existing SAEs exhibit severe instability, as identical models trained on similar datasets can produce sharply different dictionaries, undermining their reliability as an interpretability tool. To address this issue, we draw inspiration from the Archetypal Analysis framework introduced by Cutler & Breiman (1994) and present Archetypal SAEs (A-SAE), wherein dictionary atoms are constrained to the convex hull of data. This geometric anchoring significantly enhances the stability of inferred dictionaries, and their mildly relaxed variants RA-SAEs further match state-of-the-art reconstruction abilities. To rigorously assess dictionary quality learned by SAEs, we introduce two new benchmarks that test (i) plausibility, if dictionaries recover "true" classification directions and (ii) identifiability, if dictionaries disentangle synthetic concept mixtures. Across all evaluations, RA-SAEs consistently yield more structured representations while uncovering novel, semantically meaningful concepts in large-scale vision models.
Abstract:We present Universal Sparse Autoencoders (USAEs), a framework for uncovering and aligning interpretable concepts spanning multiple pretrained deep neural networks. Unlike existing concept-based interpretability methods, which focus on a single model, USAEs jointly learn a universal concept space that can reconstruct and interpret the internal activations of multiple models at once. Our core insight is to train a single, overcomplete sparse autoencoder (SAE) that ingests activations from any model and decodes them to approximate the activations of any other model under consideration. By optimizing a shared objective, the learned dictionary captures common factors of variation-concepts-across different tasks, architectures, and datasets. We show that USAEs discover semantically coherent and important universal concepts across vision models; ranging from low-level features (e.g., colors and textures) to higher-level structures (e.g., parts and objects). Overall, USAEs provide a powerful new method for interpretable cross-model analysis and offers novel applications, such as coordinated activation maximization, that open avenues for deeper insights in multi-model AI systems
Abstract:This thesis explores advanced approaches to improve explainability in computer vision by analyzing and modeling the features exploited by deep neural networks. Initially, it evaluates attribution methods, notably saliency maps, by introducing a metric based on algorithmic stability and an approach utilizing Sobol indices, which, through quasi-Monte Carlo sequences, allows a significant reduction in computation time. In addition, the EVA method offers a first formulation of attribution with formal guarantees via verified perturbation analysis. Experimental results indicate that in complex scenarios these methods do not provide sufficient understanding, particularly because they identify only "where" the model focuses without clarifying "what" it perceives. Two hypotheses are therefore examined: aligning models with human reasoning -- through the introduction of a training routine that integrates the imitation of human explanations and optimization within the space of 1-Lipschitz functions -- and adopting a conceptual explainability approach. The CRAFT method is proposed to automate the extraction of the concepts used by the model and to assess their importance, complemented by MACO, which enables their visualization. These works converge towards a unified framework, illustrated by an interactive demonstration applied to the 1000 ImageNet classes in a ResNet model.
Abstract:Orthogonal convolutional layers are the workhorse of multiple areas in machine learning, such as adversarial robustness, normalizing flows, GANs, and Lipschitzconstrained models. Their ability to preserve norms and ensure stable gradient propagation makes them valuable for a large range of problems. Despite their promise, the deployment of orthogonal convolution in large-scale applications is a significant challenge due to computational overhead and limited support for modern features like strides, dilations, group convolutions, and transposed convolutions.In this paper, we introduce AOC (Adaptative Orthogonal Convolution), a scalable method for constructing orthogonal convolutions, effectively overcoming these limitations. This advancement unlocks the construction of architectures that were previously considered impractical. We demonstrate through our experiments that our method produces expressive models that become increasingly efficient as they scale. To foster further advancement, we provide an open-source library implementing this method, available at https://github.com/thib-s/orthogonium.
Abstract:Much of the research on the interpretability of deep neural networks has focused on studying the visual features that maximally activate individual neurons. However, recent work has cast doubts on the usefulness of such local representations for understanding the behavior of deep neural networks because individual neurons tend to respond to multiple unrelated visual patterns, a phenomenon referred to as "superposition". A promising alternative to disentangle these complex patterns is learning sparsely distributed vector representations from entire network layers, as the resulting basis vectors seemingly encode single identifiable visual patterns consistently. Thus, one would expect the resulting code to align better with human perceivable visual patterns, but supporting evidence remains, at best, anecdotal. To fill this gap, we conducted three large-scale psychophysics experiments collected from a pool of 560 participants. Our findings provide (i) strong evidence that features obtained from sparse distributed representations are easier to interpret by human observers and (ii) that this effect is more pronounced in the deepest layers of a neural network. Complementary analyses also reveal that (iii) features derived from sparse distributed representations contribute more to the model's decision. Overall, our results highlight that distributed representations constitute a superior basis for interpretability, underscoring a need for the field to move beyond the interpretation of local neural codes in favor of sparsely distributed ones.
Abstract:With models getting stronger, evaluations have grown more complex, testing multiple skills in one benchmark and even in the same instance at once. However, skill-wise performance is obscured when inspecting aggregate accuracy, under-utilizing the rich signal modern benchmarks contain. We propose an automatic approach to recover the underlying skills relevant for any evaluation instance, by way of inspecting model-generated rationales. After validating the relevance of rationale-parsed skills and inferring skills for $46$k instances over $12$ benchmarks, we observe many skills to be common across benchmarks, resulting in the curation of hundreds of skill-slices (i.e. sets of instances testing a common skill). Inspecting accuracy over these slices yields novel insights on model trade-offs: e.g., compared to GPT-4o and Claude 3.5 Sonnet, on average, Gemini 1.5 Pro is $18\%$ more accurate in "computing molar mass", but $19\%$ less accurate in "applying constitutional law", despite the overall accuracies of the three models differing by a mere $0.4\%$. Furthermore, we demonstrate the practical utility of our approach by showing that insights derived from skill slice analysis can generalize to held-out instances: when routing each instance to the model strongest on the relevant skills, we see a $3\%$ accuracy improvement over our $12$ dataset corpus. Our skill-slices and framework open a new avenue in model evaluation, leveraging skill-specific analyses to unlock a more granular and actionable understanding of model capabilities.
Abstract:Despite the growing use of deep neural networks in safety-critical decision-making, their inherent black-box nature hinders transparency and interpretability. Explainable AI (XAI) methods have thus emerged to understand a model's internal workings, and notably attribution methods also called saliency maps. Conventional attribution methods typically identify the locations -- the where -- of significant regions within an input. However, because they overlook the inherent structure of the input data, these methods often fail to interpret what these regions represent in terms of structural components (e.g., textures in images or transients in sounds). Furthermore, existing methods are usually tailored to a single data modality, limiting their generalizability. In this paper, we propose leveraging the wavelet domain as a robust mathematical foundation for attribution. Our approach, the Wavelet Attribution Method (WAM) extends the existing gradient-based feature attributions into the wavelet domain, providing a unified framework for explaining classifiers across images, audio, and 3D shapes. Empirical evaluations demonstrate that WAM matches or surpasses state-of-the-art methods across faithfulness metrics and models in image, audio, and 3D explainability. Finally, we show how our method explains not only the where -- the important parts of the input -- but also the what -- the relevant patterns in terms of structural components.
Abstract:Recent studies suggest that deep learning models inductive bias towards favoring simpler features may be one of the sources of shortcut learning. Yet, there has been limited focus on understanding the complexity of the myriad features that models learn. In this work, we introduce a new metric for quantifying feature complexity, based on $\mathscr{V}$-information and capturing whether a feature requires complex computational transformations to be extracted. Using this $\mathscr{V}$-information metric, we analyze the complexities of 10,000 features, represented as directions in the penultimate layer, that were extracted from a standard ImageNet-trained vision model. Our study addresses four key questions: First, we ask what features look like as a function of complexity and find a spectrum of simple to complex features present within the model. Second, we ask when features are learned during training. We find that simpler features dominate early in training, and more complex features emerge gradually. Third, we investigate where within the network simple and complex features flow, and find that simpler features tend to bypass the visual hierarchy via residual connections. Fourth, we explore the connection between features complexity and their importance in driving the networks decision. We find that complex features tend to be less important. Surprisingly, important features become accessible at earlier layers during training, like a sedimentation process, allowing the model to build upon these foundational elements.
Abstract:Humans can effortlessly draw new categories from a single exemplar, a feat that has long posed a challenge for generative models. However, this gap has started to close with recent advances in diffusion models. This one-shot drawing task requires powerful inductive biases that have not been systematically investigated. Here, we study how different inductive biases shape the latent space of Latent Diffusion Models (LDMs). Along with standard LDM regularizers (KL and vector quantization), we explore supervised regularizations (including classification and prototype-based representation) and contrastive inductive biases (using SimCLR and redundancy reduction objectives). We demonstrate that LDMs with redundancy reduction and prototype-based regularizations produce near-human-like drawings (regarding both samples' recognizability and originality) -- better mimicking human perception (as evaluated psychophysically). Overall, our results suggest that the gap between humans and machines in one-shot drawings is almost closed.
Abstract:Efforts to decode neural network vision models necessitate a comprehensive grasp of both the spatial and semantic facets governing feature responses within images. Most research has primarily centered around attribution methods, which provide explanations in the form of heatmaps, showing where the model directs its attention for a given feature. However, grasping 'where' alone falls short, as numerous studies have highlighted the limitations of those methods and the necessity to understand 'what' the model has recognized at the focal point of its attention. In parallel, 'Feature visualization' offers another avenue for interpreting neural network features. This approach synthesizes an optimal image through gradient ascent, providing clearer insights into 'what' features respond to. However, feature visualizations only provide one global explanation per feature; they do not explain why features activate for particular images. In this work, we introduce a new method to the interpretability tool-kit, 'feature accentuation', which is capable of conveying both where and what in arbitrary input images induces a feature's response. At its core, feature accentuation is image-seeded (rather than noise-seeded) feature visualization. We find a particular combination of parameterization, augmentation, and regularization yields naturalistic visualizations that resemble the seed image and target feature simultaneously. Furthermore, we validate these accentuations are processed along a natural circuit by the model. We make our precise implementation of feature accentuation available to the community as the Faccent library, an extension of Lucent.