Abstract:We tackle the task of synthesizing novel views of an object given a few input images and associated camera viewpoints. Our work is inspired by recent 'geometry-free' approaches where multi-view images are encoded as a (global) set-latent representation, which is then used to predict the color for arbitrary query rays. While this representation yields (coarsely) accurate images corresponding to novel viewpoints, the lack of geometric reasoning limits the quality of these outputs. To overcome this limitation, we propose 'Geometry-biased Transformers' (GBTs) that incorporate geometric inductive biases in the set-latent representation-based inference to encourage multi-view geometric consistency. We induce the geometric bias by augmenting the dot-product attention mechanism to also incorporate 3D distances between rays associated with tokens as a learnable bias. We find that this, along with camera-aware embeddings as input, allows our models to generate significantly more accurate outputs. We validate our approach on the real-world CO3D dataset, where we train our system over 10 categories and evaluate its view-synthesis ability for novel objects as well as unseen categories. We empirically validate the benefits of the proposed geometric biases and show that our approach significantly improves over prior works.
Abstract:Progress in GANs has enabled the generation of high-resolution photorealistic images of astonishing quality. StyleGANs allow for compelling attribute modification on such images via mathematical operations on the latent style vectors in the W/W+ space that effectively modulate the rich hierarchical representations of the generator. Such operations have recently been generalized beyond mere attribute swapping in the original StyleGAN paper to include interpolations. In spite of many significant improvements in StyleGANs, they are still seen to generate unnatural images. The quality of the generated images is predicated on two assumptions; (a) The richness of the hierarchical representations learnt by the generator, and, (b) The linearity and smoothness of the style spaces. In this work, we propose a Hierarchical Semantic Regularizer (HSR) which aligns the hierarchical representations learnt by the generator to corresponding powerful features learnt by pretrained networks on large amounts of data. HSR is shown to not only improve generator representations but also the linearity and smoothness of the latent style spaces, leading to the generation of more natural-looking style-edited images. To demonstrate improved linearity, we propose a novel metric - Attribute Linearity Score (ALS). A significant reduction in the generation of unnatural images is corroborated by improvement in the Perceptual Path Length (PPL) metric by 16.19% averaged across different standard datasets while simultaneously improving the linearity of attribute-change in the attribute editing tasks.
Abstract:In this paper, we describe an approach for representation learning of audio signals for the task of COVID-19 detection. The raw audio samples are processed with a bank of 1-D convolutional filters that are parameterized as cosine modulated Gaussian functions. The choice of these kernels allows the interpretation of the filterbanks as smooth band-pass filters. The filtered outputs are pooled, log-compressed and used in a self-attention based relevance weighting mechanism. The relevance weighting emphasizes the key regions of the time-frequency decomposition that are important for the downstream task. The subsequent layers of the model consist of a recurrent architecture and the models are trained for a COVID-19 detection task. In our experiments on the Coswara data set, we show that the proposed model achieves significant performance improvements over the baseline system as well as other representation learning approaches. Further, the approach proposed is shown to be uniformly applicable for speech and breathing signals and for transfer learning from a larger data set.
Abstract:This report describes the system used for detecting COVID-19 positives using three different acoustic modalities, namely speech, breathing, and cough in the second DiCOVA challenge. The proposed system is based on the combination of 4 different approaches, each focusing more on one aspect of the problem, and reaches the blind test AUCs of 86.41, 77.60, and 84.55, in the breathing, cough, and speech tracks, respectively, and the AUC of 85.37 in the fusion of these three tracks.
Abstract:Recent studies show that paddings in convolutional neural networks encode absolute position information which can negatively affect the model performance for certain tasks. However, existing metrics for quantifying the strength of positional information remain unreliable and frequently lead to erroneous results. To address this issue, we propose novel metrics for measuring (and visualizing) the encoded positional information. We formally define the encoded information as PPP (Position-information Pattern from Padding) and conduct a series of experiments to study its properties as well as its formation. The proposed metrics measure the presence of positional information more reliably than the existing metrics based on PosENet and a test in F-Conv. We also demonstrate that for any extant (and proposed) padding schemes, PPP is primarily a learning artifact and is less dependent on the characteristics of the underlying padding schemes.
Abstract:Inspired by the recent progress in self-supervised learning for computer vision, in this paper, through the DeLoRes learning framework, we introduce two new general-purpose audio representation learning approaches, the DeLoRes-S and DeLoRes-M. Our main objective is to make our network learn representations in a resource-constrained setting (both data and compute), that can generalize well across a diverse set of downstream tasks. Inspired from the Barlow Twins objective function, we propose to learn embeddings that are invariant to distortions of an input audio sample, while making sure that they contain non-redundant information about the sample. To achieve this, we measure the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of an audio segment sampled from an audio file and make it as close to the identity matrix as possible. We call this the DeLoRes learning framework, which we employ in different fashions with the DeLoRes-S and DeLoRes-M. We use a combination of a small subset of the large-scale AudioSet dataset and FSD50K for self-supervised learning and are able to learn with less than half the parameters compared to state-of-the-art algorithms. For evaluation, we transfer these learned representations to 11 downstream classification tasks, including speech, music, and animal sounds, and achieve state-of-the-art results on 7 out of 11 tasks on linear evaluation with DeLoRes-M and show competitive results with DeLoRes-S, even when pre-trained using only a fraction of the total data when compared to prior art. Our transfer learning evaluation setup also shows extremely competitive results for both DeLoRes-S and DeLoRes-M, with DeLoRes-M achieving state-of-the-art in 4 tasks.
Abstract:Powerful priors allow us to perform inference with insufficient information. In this paper, we propose an autoregressive prior for 3D shapes to solve multimodal 3D tasks such as shape completion, reconstruction, and generation. We model the distribution over 3D shapes as a non-sequential autoregressive distribution over a discretized, low-dimensional, symbolic grid-like latent representation of 3D shapes. This enables us to represent distributions over 3D shapes conditioned on information from an arbitrary set of spatially anchored query locations and thus perform shape completion in such arbitrary settings (e.g., generating a complete chair given only a view of the back leg). We also show that the learned autoregressive prior can be leveraged for conditional tasks such as single-view reconstruction and language-based generation. This is achieved by learning task-specific naive conditionals which can be approximated by light-weight models trained on minimal paired data. We validate the effectiveness of the proposed method using both quantitative and qualitative evaluation and show that the proposed method outperforms the specialized state-of-the-art methods trained for individual tasks. The project page with code and video visualizations can be found at https://yccyenchicheng.github.io/AutoSDF/.
Abstract:Recent algorithms for image manipulation detection almost exclusively use deep network models. These approaches require either dense pixelwise groundtruth masks, camera ids, or image metadata to train the networks. On one hand, constructing a training set to represent the countless tampering possibilities is impractical. On the other hand, social media platforms or commercial applications are often constrained to remove camera ids as well as metadata from images. A self-supervised algorithm for training manipulation detection models without dense groundtruth or camera/image metadata would be extremely useful for many forensics applications. In this paper, we propose self-supervised approach for training splicing detection/localization models from frequency transforms of images. To identify the spliced regions, our deep network learns a representation to capture an image specific signature by enforcing (image) self consistency . We experimentally demonstrate that our proposed model can yield similar or better performances of multiple existing methods on standard datasets without relying on labels or metadata.
Abstract:This paper presents primarily two Euclidean embeddings of the quotient space generated by matrices that are identified modulo arbitrary row permutations. The original application is in deep learning on graphs where the learning task is invariant to node relabeling. Two embedding schemes are introduced, one based on sorting and the other based on algebras of multivariate polynomials. While both embeddings exhibit a computational complexity exponential in problem size, the sorting based embedding is globally bi-Lipschitz and admits a low dimensional target space. Additionally, an almost everywhere injective scheme can be implemented with minimal redundancy and low computational cost. In turn, this proves that almost any classifier can be implemented with an arbitrary small loss of performance. Numerical experiments are carried out on two data sets, a chemical compound data set (QM9) and a proteins data set (PROTEINS).
Abstract:A wide variety of methods have been developed to enable lifelong learning in conventional deep neural networks. However, to succeed, these methods require a `batch' of samples to be available and visited multiple times during training. While this works well in a static setting, these methods continue to suffer in a more realistic situation where data arrives in \emph{online streaming manner}. We empirically demonstrate that the performance of current approaches degrades if the input is obtained as a stream of data with the following restrictions: $(i)$ each instance comes one at a time and can be seen only once, and $(ii)$ the input data violates the i.i.d assumption, i.e., there can be a class-based correlation. We propose a novel approach (CIOSL) for the class-incremental learning in an \emph{online streaming setting} to address these challenges. The proposed approach leverages implicit and explicit dual weight regularization and experience replay. The implicit regularization is leveraged via the knowledge distillation, while the explicit regularization incorporates a novel approach for parameter regularization by learning the joint distribution of the buffer replay and the current sample. Also, we propose an efficient online memory replay and replacement buffer strategy that significantly boosts the model's performance. Extensive experiments and ablation on challenging datasets show the efficacy of the proposed method.