Abstract:The recent advancements in artificial intelligence (AI), with the release of several large models having only query access, make a strong case for explainability of deep models in a post-hoc gradient free manner. In this paper, we propose a framework, named distillation aided explainability (DAX), that attempts to generate a saliency-based explanation in a model agnostic gradient free application. The DAX approach poses the problem of explanation in a learnable setting with a mask generation network and a distillation network. The mask generation network learns to generate the multiplier mask that finds the salient regions of the input, while the student distillation network aims to approximate the local behavior of the black-box model. We propose a joint optimization of the two networks in the DAX framework using the locally perturbed input samples, with the targets derived from input-output access to the black-box model. We extensively evaluate DAX across different modalities (image and audio), in a classification setting, using a diverse set of evaluations (intersection over union with ground truth, deletion based and subjective human evaluation based measures) and benchmark it with respect to $9$ different methods. In these evaluations, the DAX significantly outperforms the existing approaches on all modalities and evaluation metrics.
Abstract:Speech emotion recognition (SER), the task of identifying the expression of emotion from spoken content, is challenging due to the difficulty in extracting representations that capture emotional attributes from speech. The scarcity of large labeled datasets further complicates the challenge where large models are prone to over-fitting. In this paper, we propose CARE (Content and Acoustic Representations of Emotions), where we design a dual encoding scheme which emphasizes semantic and acoustic factors of speech. While the semantic encoder is trained with the distillation of utterance-level text representation model, the acoustic encoder is trained to predict low-level frame-wise features of the speech signal. The proposed dual encoding scheme is a base-sized model trained only on unsupervised raw speech. With a simple light-weight classification model trained on the downstream task, we show that the CARE embeddings provide effective emotion recognition on a variety of tasks. We compare the proposal with several other self-supervised models as well as recent large-language model based approaches. In these evaluations, the proposed CARE model is shown to be the best performing model based on average performance across 8 diverse datasets. We also conduct several ablation studies to analyze the importance of various design choices.
Abstract:Representing speech as discrete tokens provides a framework for transforming speech into a format that closely resembles text, thus enabling the use of speech as an input to the widely successful large language models (LLMs). Currently, while several speech tokenizers have been proposed, there is ambiguity regarding the properties that are desired from a tokenizer for specific downstream tasks and its overall generalizability. Evaluating the performance of tokenizers across different downstream tasks is a computationally intensive effort that poses challenges for scalability. To circumvent this requirement, we present STAB (Speech Tokenizer Assessment Benchmark), a systematic evaluation framework designed to assess speech tokenizers comprehensively and shed light on their inherent characteristics. This framework provides a deeper understanding of the underlying mechanisms of speech tokenization, thereby offering a valuable resource for expediting the advancement of future tokenizer models and enabling comparative analysis using a standardized benchmark. We evaluate the STAB metrics and correlate this with downstream task performance across a range of speech tasks and tokenizer choices.
Abstract:Speech accents present a serious challenge to the performance of state-of-the-art end-to-end Automatic Speech Recognition (ASR) systems. Even with self-supervised learning and pre-training of ASR models, accent invariance is seldom achieved. In this work, we propose an accent-aware adaptation technique for self-supervised learning that introduces a trainable set of accent-specific codebooks to the self-supervised architecture. These learnable codebooks enable the model to capture accent specific information during pre-training, that is further refined during ASR finetuning. On the Mozilla Common Voice dataset, our proposed approach outperforms all other accent-adaptation approaches on both seen and unseen English accents, with up to 9% relative reduction in word error rate (WER).
Abstract:The popular frameworks for self-supervised learning of speech representations have largely focused on frame-level masked prediction of speech regions. While this has shown promising downstream task performance for speech recognition and related tasks, this has largely ignored factors of speech that are encoded at coarser level, like characteristics of the speaker or channel that remain consistent through-out a speech utterance. In this work, we propose a framework for Learning Disentangled Self Supervised (termed as Learn2Diss) representations of speech, which consists of frame-level and an utterance-level encoder modules. The two encoders are initially learned independently, where the frame-level model is largely inspired by existing self supervision techniques, thereby learning pseudo-phonemic representations, while the utterance-level encoder is inspired by constrastive learning of pooled embeddings, thereby learning pseudo-speaker representations. The joint learning of these two modules consists of disentangling the two encoders using a mutual information based criterion. With several downstream evaluation experiments, we show that the proposed Learn2Diss achieves state-of-the-art results on a variety of tasks, with the frame-level encoder representations improving semantic tasks, while the utterance-level representations improve non-semantic tasks.
Abstract:The DIarization of SPeaker and LAnguage in Conversational Environments (DISPLACE) 2024 challenge is the second in the series of DISPLACE challenges, which involves tasks of speaker diarization (SD) and language diarization (LD) on a challenging multilingual conversational speech dataset. In the DISPLACE 2024 challenge, we also introduced the task of automatic speech recognition (ASR) on this dataset. The dataset containing 158 hours of speech, consisting of both supervised and unsupervised mono-channel far-field recordings, was released for LD and SD tracks. Further, 12 hours of close-field mono-channel recordings were provided for the ASR track conducted on 5 Indian languages. The details of the dataset, baseline systems and the leader board results are highlighted in this paper. We have also compared our baseline models and the team's performances on evaluation data of DISPLACE-2023 to emphasize the advancements made in this second version of the challenge.
Abstract:Speaker diarization, the task of segmenting an audio recording based on speaker identity, constitutes an important speech pre-processing step for several downstream applications. The conventional approach to diarization involves multiple steps of embedding extraction and clustering, which are often optimized in an isolated fashion. While end-to-end diarization systems attempt to learn a single model for the task, they are often cumbersome to train and require large supervised datasets. In this paper, we propose an end-to-end supervised hierarchical clustering algorithm based on graph neural networks (GNN), called End-to-end Supervised HierARchical Clustering (E-SHARC). The E-SHARC approach uses front-end mel-filterbank features as input and jointly learns an embedding extractor and the GNN clustering module, performing representation learning, metric learning, and clustering with end-to-end optimization. Further, with additional inputs from an external overlap detector, the E-SHARC approach is capable of predicting the speakers in the overlapping speech regions. The experimental evaluation on several benchmark datasets like AMI, VoxConverse and DISPLACE, illustrates that the proposed E-SHARC framework improves significantly over the state-of-art diarization systems.
Abstract:The problem of audio-to-audio (A2A) style transfer involves replacing the style features of the source audio with those from the target audio while preserving the content related attributes of the source audio. In this paper, we propose an efficient approach, termed as Zero-shot Emotion Style Transfer (ZEST), that allows the transfer of emotional content present in the given source audio with the one embedded in the target audio while retaining the speaker and speech content from the source. The proposed system builds upon decomposing speech into semantic tokens, speaker representations and emotion embeddings. Using these factors, we propose a framework to reconstruct the pitch contour of the given speech signal and train a decoder that reconstructs the speech signal. The model is trained using a self-supervision based reconstruction loss. During conversion, the emotion embedding is alone derived from the target audio, while rest of the factors are derived from the source audio. In our experiments, we show that, even without using parallel training data or labels from the source or target audio, we illustrate zero shot emotion transfer capabilities of the proposed ZEST model using objective and subjective quality evaluations.
Abstract:Foundational models with billions of parameters which have been trained on large corpora of data have demonstrated non-trivial skills in a variety of domains. However, due to their monolithic structure, it is challenging and expensive to augment them or impart new skills. On the other hand, due to their adaptation abilities, several new instances of these models are being trained towards new domains and tasks. In this work, we study the problem of efficient and practical composition of existing foundation models with more specific models to enable newer capabilities. To this end, we propose CALM -- Composition to Augment Language Models -- which introduces cross-attention between models to compose their representations and enable new capabilities. Salient features of CALM are: (i) Scales up LLMs on new tasks by 're-using' existing LLMs along with a few additional parameters and data, (ii) Existing model weights are kept intact, and hence preserves existing capabilities, and (iii) Applies to diverse domains and settings. We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13\% on tasks like translation into English and arithmetic reasoning for low-resource languages. Similarly, when PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40\% over the base model for code generation and explanation tasks -- on-par with fully fine-tuned counterparts.
Abstract:In multi-lingual societies, where multiple languages are spoken in a small geographic vicinity, informal conversations often involve mix of languages. Existing speech technologies may be inefficient in extracting information from such conversations, where the speech data is rich in diversity with multiple languages and speakers. The DISPLACE (DIarization of SPeaker and LAnguage in Conversational Environments) challenge constitutes an open-call for evaluating and bench-marking the speaker and language diarization technologies on this challenging condition. The challenge entailed two tracks: Track-1 focused on speaker diarization (SD) in multilingual situations while, Track-2 addressed the language diarization (LD) in a multi-speaker scenario. Both the tracks were evaluated using the same underlying audio data. To facilitate this evaluation, a real-world dataset featuring multilingual, multi-speaker conversational far-field speech was recorded and distributed. Furthermore, a baseline system was made available for both SD and LD task which mimicked the state-of-art in these tasks. The challenge garnered a total of $42$ world-wide registrations and received a total of $19$ combined submissions for Track-1 and Track-2. This paper describes the challenge, details of the datasets, tasks, and the baseline system. Additionally, the paper provides a concise overview of the submitted systems in both tracks, with an emphasis given to the top performing systems. The paper also presents insights and future perspectives for SD and LD tasks, focusing on the key challenges that the systems need to overcome before wide-spread commercial deployment on such conversations.