Emotion recognition in conversations (ERC) is challenging due to the multimodal nature of the emotion expression. In this paper, we propose to pretrain a text-based recognition model from unsupervised speech transcripts with LLM guidance. These transcriptions are obtained from a raw speech dataset with a pre-trained ASR system. A text LLM model is queried to provide pseudo-labels for these transcripts, and these pseudo-labeled transcripts are subsequently used for learning an utterance level text-based emotion recognition model. We use the utterance level text embeddings for emotion recognition in conversations along with speech embeddings obtained from a recently proposed pre-trained model. A hierarchical way of training the speech-text model is proposed, keeping in mind the conversational nature of the dataset. We perform experiments on three established datasets, namely, IEMOCAP, MELD, and CMU- MOSI, where we illustrate that the proposed model improves over other benchmarks and achieves state-of-the-art results on two out of these three datasets.