Abstract:LLMs often fail to meet the specialized needs of distinct user groups due to their one-size-fits-all training paradigm \cite{lucy-etal-2024-one} and there is limited research on what personalization aspects each group expect. To address these limitations, we propose a group-aware personalization framework, Group Preference Alignment (GPA), that identifies context-specific variations in conversational preferences across user groups and then steers LLMs to address those preferences. Our approach consists of two steps: (1) Group-Aware Preference Extraction, where maximally divergent user-group preferences are extracted from real-world conversation logs and distilled into interpretable rubrics, and (2) Tailored Response Generation, which leverages these rubrics through two methods: a) Context-Tuned Inference (GAP-CT), that dynamically adjusts responses via context-dependent prompt instructions, and b) Rubric-Finetuning Inference (GPA-FT), which uses the rubrics to generate contrastive synthetic data for personalization of group-specific models via alignment. Experiments demonstrate that our framework significantly improves alignment of the output with respect to user preferences and outperforms baseline methods, while maintaining robust performance on standard benchmarks.
Abstract:Event annotation is important for identifying market changes, monitoring breaking news, and understanding sociological trends. Although expert annotators set the gold standards, human coding is expensive and inefficient. Unlike information extraction experiments that focus on single contexts, we evaluate a holistic workflow that removes irrelevant documents, merges documents about the same event, and annotates the events. Although LLM-based automated annotations are better than traditional TF-IDF-based methods or Event Set Curation, they are still not reliable annotators compared to human experts. However, adding LLMs to assist experts for Event Set Curation can reduce the time and mental effort required for Variable Annotation. When using LLMs to extract event variables to assist expert annotators, they agree more with the extracted variables than fully automated LLMs for annotation.
Abstract:Automating the creation of scientific diagrams from academic papers can significantly streamline the development of tutorials, presentations, and posters, thereby saving time and accelerating the process. Current text-to-image models struggle with generating accurate and visually appealing diagrams from long-context inputs. We propose SciDoc2Diagram, a task that extracts relevant information from scientific papers and generates diagrams, along with a benchmarking dataset, SciDoc2DiagramBench. We develop a multi-step pipeline SciDoc2Diagrammer that generates diagrams based on user intentions using intermediate code generation. We observed that initial diagram drafts were often incomplete or unfaithful to the source, leading us to develop SciDoc2Diagrammer-Multi-Aspect-Feedback (MAF), a refinement strategy that significantly enhances factual correctness and visual appeal and outperforms existing models on both automatic and human judgement.
Abstract:Adversarial benchmarks validate model abilities by providing samples that fool models but not humans. However, despite the proliferation of datasets that claim to be adversarial, there does not exist an established metric to evaluate how adversarial these datasets are. To address this lacuna, we introduce ADVSCORE, a metric which quantifies how adversarial and discriminative an adversarial dataset is and exposes the features that make data adversarial. We then use ADVSCORE to underpin a dataset creation pipeline that incentivizes writing a high-quality adversarial dataset. As a proof of concept, we use ADVSCORE to collect an adversarial question answering (QA) dataset, ADVQA, from our pipeline. The high-quality questions in ADVQA surpasses three adversarial benchmarks across domains at fooling several models but not humans. We validate our result based on difficulty estimates from 9,347 human responses on four datasets and predictions from three models. Moreover, ADVSCORE uncovers which adversarial tactics used by human writers fool models (e.g., GPT-4) but not humans. Through ADVSCORE and its analyses, we offer guidance on revealing language model vulnerabilities and producing reliable adversarial examples.
Abstract:In this paper, we assess the robustness (reliability) of ChatGPT under input perturbations for one of the most fundamental tasks of Information Extraction (IE) i.e. Named Entity Recognition (NER). Despite the hype, the majority of the researchers have vouched for its language understanding and generation capabilities; a little attention has been paid to understand its robustness: How the input-perturbations affect 1) the predictions, 2) the confidence of predictions and 3) the quality of rationale behind its prediction. We perform a systematic analysis of ChatGPT's robustness (under both zero-shot and few-shot setup) on two NER datasets using both automatic and human evaluation. Based on automatic evaluation metrics, we find that 1) ChatGPT is more brittle on Drug or Disease replacements (rare entities) compared to the perturbations on widely known Person or Location entities, 2) the quality of explanations for the same entity considerably differ under different types of "Entity-Specific" and "Context-Specific" perturbations and the quality can be significantly improved using in-context learning, and 3) it is overconfident for majority of the incorrect predictions, and hence it could lead to misguidance of the end-users.
Abstract:Question answering (QA) can only make progress if we know if an answer is correct, but for many of the most challenging and interesting QA examples, current answer correctness (AC) metrics do not align with human judgments, particularly verbose, free form answers from large language models (LLM). There are two challenges: a lack of data and that models are too big. LLM based scorers correlate better with humans, but this expensive task has only been tested on limited QA datasets. We rectify these issues by providing clear guidelines for evaluating machine QA adopted from human QA contests. We also introduce Precise ANswer correctness Determination and Adjudication (PANDA), a small, efficient, deterministic AC classifier (812 KB) that more accurately evaluates answer correctness.
Abstract:We present MunTTS, an end-to-end text-to-speech (TTS) system specifically for Mundari, a low-resource Indian language of the Austo-Asiatic family. Our work addresses the gap in linguistic technology for underrepresented languages by collecting and processing data to build a speech synthesis system. We begin our study by gathering a substantial dataset of Mundari text and speech and train end-to-end speech models. We also delve into the methods used for training our models, ensuring they are efficient and effective despite the data constraints. We evaluate our system with native speakers and objective metrics, demonstrating its potential as a tool for preserving and promoting the Mundari language in the digital age.
Abstract:Question answering (QA) can only make progress if we know if an answer is correct, but for many of the most challenging and interesting QA examples, current evaluation metrics to determine answer equivalence (AE) often do not align with human judgments, particularly more verbose, free-form answers from large language models (LLM). There are two challenges: a lack of data and that models are too big: LLM-based scorers can correlate better with human judges, but this task has only been tested on limited QA datasets, and even when available, update of the model is limited because LLMs are large and often expensive. We rectify both of these issues by providing clear and consistent guidelines for evaluating AE in machine QA adopted from professional human QA contests. We also introduce a combination of standard evaluation and a more efficient, robust, and lightweight discriminate AE classifier-based matching method (CFMatch, smaller than 1 MB), trained and validated to more accurately evaluate answer correctness in accordance with adopted expert AE rules that are more aligned with human judgments.
Abstract:Dynamic adversarial question generation, where humans write examples to stump a model, aims to create examples that are realistic and informative. However, the advent of large language models (LLMs) has been a double-edged sword for human authors: more people are interested in seeing and pushing the limits of these models, but because the models are so much stronger an opponent, they are harder to defeat. To understand how these models impact adversarial question writing process, we enrich the writing guidance with LLMs and retrieval models for the authors to reason why their questions are not adversarial. While authors could create interesting, challenging adversarial questions, they sometimes resort to tricks that result in poor questions that are ambiguous, subjective, or confusing not just to a computer but also to humans. To address these issues, we propose new metrics and incentives for eliciting good, challenging questions and present a new dataset of adversarially authored questions.
Abstract:Learning template based information extraction from documents is a crucial yet difficult task. Prior template-based IE approaches assume foreknowledge of the domain templates; however, real-world IE do not have pre-defined schemas and it is a figure-out-as you go phenomena. To quickly bootstrap templates in a real-world setting, we need to induce template slots from documents with zero or minimal supervision. Since the purpose of question answering intersect with the goal of information extraction, we use automatic question generation to induce template slots from the documents and investigate how a tiny amount of a proxy human-supervision on-the-fly (termed as InteractiveIE) can further boost the performance. Extensive experiments on biomedical and legal documents, where obtaining training data is expensive, reveal encouraging trends of performance improvement using InteractiveIE over AI-only baseline.