Abstract:Adversarial benchmarks validate model abilities by providing samples that fool models but not humans. However, despite the proliferation of datasets that claim to be adversarial, there does not exist an established metric to evaluate how adversarial these datasets are. To address this lacuna, we introduce ADVSCORE, a metric which quantifies how adversarial and discriminative an adversarial dataset is and exposes the features that make data adversarial. We then use ADVSCORE to underpin a dataset creation pipeline that incentivizes writing a high-quality adversarial dataset. As a proof of concept, we use ADVSCORE to collect an adversarial question answering (QA) dataset, ADVQA, from our pipeline. The high-quality questions in ADVQA surpasses three adversarial benchmarks across domains at fooling several models but not humans. We validate our result based on difficulty estimates from 9,347 human responses on four datasets and predictions from three models. Moreover, ADVSCORE uncovers which adversarial tactics used by human writers fool models (e.g., GPT-4) but not humans. Through ADVSCORE and its analyses, we offer guidance on revealing language model vulnerabilities and producing reliable adversarial examples.
Abstract:Dynamic adversarial question generation, where humans write examples to stump a model, aims to create examples that are realistic and informative. However, the advent of large language models (LLMs) has been a double-edged sword for human authors: more people are interested in seeing and pushing the limits of these models, but because the models are so much stronger an opponent, they are harder to defeat. To understand how these models impact adversarial question writing process, we enrich the writing guidance with LLMs and retrieval models for the authors to reason why their questions are not adversarial. While authors could create interesting, challenging adversarial questions, they sometimes resort to tricks that result in poor questions that are ambiguous, subjective, or confusing not just to a computer but also to humans. To address these issues, we propose new metrics and incentives for eliciting good, challenging questions and present a new dataset of adversarially authored questions.
Abstract:Polarization and the marketplace for impressions have conspired to make navigating information online difficult for users, and while there has been a significant effort to detect false or misleading text, multimodal datasets have received considerably less attention. To complement existing resources, we present multimodal Video Misleading Headline (VMH), a dataset that consists of videos and whether annotators believe the headline is representative of the video's contents. After collecting and annotating this dataset, we analyze multimodal baselines for detecting misleading headlines. Our annotation process also focuses on why annotators view a video as misleading, allowing us to better understand the interplay of annotators' background and the content of the videos.