Abstract:Despite the remarkable advancements and widespread applications of deep neural networks, their ability to perform reasoning tasks remains limited, particularly in domains requiring structured, abstract thought. In this paper, we investigate the linguistic reasoning capabilities of state-of-the-art large language models (LLMs) by introducing IOLBENCH, a novel benchmark derived from International Linguistics Olympiad (IOL) problems. This dataset encompasses diverse problems testing syntax, morphology, phonology, and semantics, all carefully designed to be self-contained and independent of external knowledge. These tasks challenge models to engage in metacognitive linguistic reasoning, requiring the deduction of linguistic rules and patterns from minimal examples. Through extensive benchmarking of leading LLMs, we find that even the most advanced models struggle to handle the intricacies of linguistic complexity, particularly in areas demanding compositional generalization and rule abstraction. Our analysis highlights both the strengths and persistent limitations of current models in linguistic problem-solving, offering valuable insights into their reasoning capabilities. By introducing IOLBENCH, we aim to foster further research into developing models capable of human-like reasoning, with broader implications for the fields of computational linguistics and artificial intelligence.
Abstract:We present NAVCON, a large-scale annotated Vision-Language Navigation (VLN) corpus built on top of two popular datasets (R2R and RxR). The paper introduces four core, cognitively motivated and linguistically grounded, navigation concepts and an algorithm for generating large-scale silver annotations of naturally occurring linguistic realizations of these concepts in navigation instructions. We pair the annotated instructions with video clips of an agent acting on these instructions. NAVCON contains 236, 316 concept annotations for approximately 30, 0000 instructions and 2.7 million aligned images (from approximately 19, 000 instructions) showing what the agent sees when executing an instruction. To our knowledge, this is the first comprehensive resource of navigation concepts. We evaluated the quality of the silver annotations by conducting human evaluation studies on NAVCON samples. As further validation of the quality and usefulness of the resource, we trained a model for detecting navigation concepts and their linguistic realizations in unseen instructions. Additionally, we show that few-shot learning with GPT-4o performs well on this task using large-scale silver annotations of NAVCON.
Abstract:With the ubiquity of Large Language Models (LLMs), guardrails have become crucial to detect and defend against toxic content. However, with the increasing pervasiveness of LLMs in multilingual scenarios, their effectiveness in handling multilingual toxic inputs remains unclear. In this work, we introduce a comprehensive multilingual test suite, spanning seven datasets and over ten languages, to benchmark the performance of state-of-the-art guardrails. We also investigates the resilience of guardrails against recent jailbreaking techniques, and assess the impact of in-context safety policies and language resource availability on guardrails' performance. Our findings show that existing guardrails are still ineffective at handling multilingual toxicity and lack robustness against jailbreaking prompts. This work aims to identify the limitations of guardrails and to build a more reliable and trustworthy LLMs in multilingual scenarios.
Abstract:Reducing the likelihood of generating harmful and toxic output is an essential task when aligning large language models (LLMs). Existing methods mainly rely on training an external reward model (i.e., another language model) or fine-tuning the LLM using self-generated data to influence the outcome. In this paper, we show that LLMs have the capability of self-detoxification without the use of an additional reward model or re-training. We propose \textit{Self-disciplined Autoregressive Sampling (SASA)}, a lightweight controlled decoding algorithm for toxicity reduction of LLMs. SASA leverages the contextual representations from an LLM to learn linear subspaces characterizing toxic v.s. non-toxic output in analytical forms. When auto-completing a response token-by-token, SASA dynamically tracks the margin of the current output to steer the generation away from the toxic subspace, by adjusting the autoregressive sampling strategy. Evaluated on LLMs of different scale and nature, namely Llama-3.1-Instruct (8B), Llama-2 (7B), and GPT2-L models with the RealToxicityPrompts, BOLD, and AttaQ benchmarks, SASA markedly enhances the quality of the generated sentences relative to the original models and attains comparable performance to state-of-the-art detoxification techniques, significantly reducing the toxicity level by only using the LLM's internal representations.
Abstract:While recent large language models (LLMs) demonstrate remarkable abilities in responding to queries in diverse languages, their ability to handle long multilingual contexts is unexplored. As such, a systematic evaluation of the long-context capabilities of LLMs in multilingual settings is crucial, specifically in the context of information retrieval. To address this gap, we introduce the MultiLingual Needle-in-a-Haystack (MLNeedle) test, designed to assess a model's ability to retrieve relevant information (the needle) from a collection of multilingual distractor texts (the haystack). This test serves as an extension of the multilingual question-answering task, encompassing both monolingual and cross-lingual retrieval. We evaluate four state-of-the-art LLMs on MLNeedle. Our findings reveal that model performance can vary significantly with language and needle position. Specifically, we observe that model performance is the lowest when the needle is (i) in a language outside the English language family and (ii) located in the middle of the input context. Furthermore, although some models claim a context size of $8k$ tokens or greater, none demonstrate satisfactory cross-lingual retrieval performance as the context length increases. Our analysis provides key insights into the long-context behavior of LLMs in multilingual settings to guide future evaluation protocols. To our knowledge, this is the first study to investigate the multilingual long-context behavior of LLMs.
Abstract:In this paper, we demonstrate the benefits of using memory augmented Large Language Model (LLM) architecture in improving the recall abilities of facts from a potentially long context. As a case study we test LARIMAR, a recently proposed LLM architecture which augments a LLM decoder with an external associative memory, on several long-context recall tasks, including passkey and needle-in-the-haystack tests. We demonstrate that the external memory can be adapted at test time to handle contexts much longer than those seen during training, while keeping readouts from the memory recognizable to the trained decoder and without increasing GPU memory footprint. Compared to alternative architectures for long-context recall tasks with models of a comparable parameter count, LARIMAR is able to maintain strong performance without any task-specific training.
Abstract:Assertions have been the de facto collateral for simulation-based and formal verification of hardware designs for over a decade. The quality of hardware verification, \ie, detection and diagnosis of corner-case design bugs, is critically dependent on the quality of the assertions. There has been a considerable amount of research leveraging a blend of data-driven statistical analysis and static analysis to generate high-quality assertions from hardware design source code and design execution trace data. Despite such concerted effort, all prior research struggles to scale to industrial-scale large designs, generates too many low-quality assertions, often fails to capture subtle and non-trivial design functionality, and does not produce any easy-to-comprehend explanations of the generated assertions to understand assertions' suitability to different downstream validation tasks. Recently, with the advent of Large-Language Models (LLMs), there has been a widespread effort to leverage prompt engineering to generate assertions. However, there is little effort to quantitatively establish the effectiveness and suitability of various LLMs for assertion generation. In this paper, we present AssertionBench, a novel benchmark to evaluate LLMs' effectiveness for assertion generation quantitatively. AssertioBench contains 100 curated Verilog hardware designs from OpenCores and formally verified assertions for each design generated from GoldMine and HARM. We use AssertionBench to compare state-of-the-art LLMs to assess their effectiveness in inferring functionally correct assertions for hardware designs. Our experiments demonstrate how LLMs perform relative to each other, the benefits of using more in-context exemplars in generating a higher fraction of functionally correct assertions, and the significant room for improvement for LLM-based assertion generators.
Abstract:CTBench is introduced as a benchmark to assess language models (LMs) in aiding clinical study design. Given study-specific metadata, CTBench evaluates AI models' ability to determine the baseline features of a clinical trial (CT), which include demographic and relevant features collected at the trial's start from all participants. These baseline features, typically presented in CT publications (often as Table 1), are crucial for characterizing study cohorts and validating results. Baseline features, including confounders and covariates, are also necessary for accurate treatment effect estimation in studies involving observational data. CTBench consists of two datasets: "CT-Repo," containing baseline features from 1,690 clinical trials sourced from clinicaltrials.gov, and "CT-Pub," a subset of 100 trials with more comprehensive baseline features gathered from relevant publications. Two LM-based evaluation methods are developed to compare the actual baseline feature lists against LM-generated responses. "ListMatch-LM" and "ListMatch-BERT" use GPT-4o and BERT scores (at various thresholds), respectively, for evaluation. To establish baseline results, advanced prompt engineering techniques using LLaMa3-70B-Instruct and GPT-4o in zero-shot and three-shot learning settings are applied to generate potential baseline features. The performance of GPT-4o as an evaluator is validated through human-in-the-loop evaluations on the CT-Pub dataset, where clinical experts confirm matches between actual and LM-generated features. The results highlight a promising direction with significant potential for improvement, positioning CTBench as a useful tool for advancing research on AI in CT design and potentially enhancing the efficacy and robustness of CTs.
Abstract:Large Language Models (LLMs) have been observed to perform well on a wide range of downstream tasks when fine-tuned on domain-specific data. However, such data may not be readily available in many applications, motivating zero-shot or few-shot approaches using domain-adjacent models. While several fine-tuned models for various tasks are available, finding an appropriate domain-adjacent model for a given task is often not straight forward. In this paper, we study DAFT-E, a framework that utilizes an Ensemble of Domain-Adjacent Fine-Tuned Foundation Models for few-shot problems. We show that for zero-shot problems, this ensembling method provides an accuracy performance close to that of the single best model. With few-shot problems, this performance improves further, at which point DEFT-E can outperform any single domain-adjacent model while requiring much less data for domain-specific fine-tuning.
Abstract:Large Language Models (LLMs), originally shown to ace various text comprehension tasks have also remarkably been shown to tackle table comprehension tasks without specific training. While previous research has explored LLM capabilities with tabular dataset tasks, our study assesses the influence of $\textit{in-context learning}$,$ \textit{model scale}$, $\textit{instruction tuning}$, and $\textit{domain biases}$ on Tabular Question Answering (TQA). We evaluate the robustness of LLMs on Wikipedia-based $\textbf{WTQ}$ and financial report-based $\textbf{TAT-QA}$ TQA datasets, focusing on their ability to robustly interpret tabular data under various augmentations and perturbations. Our findings indicate that instructions significantly enhance performance, with recent models like Llama3 exhibiting greater robustness over earlier versions. However, data contamination and practical reliability issues persist, especially with WTQ. We highlight the need for improved methodologies, including structure-aware self-attention mechanisms and better handling of domain-specific tabular data, to develop more reliable LLMs for table comprehension.