Abstract:Recent advances in Large Language Models (LLMs) have yielded impressive successes on many language tasks. However, efficient processing of long contexts using LLMs remains a significant challenge. We introduce \textbf{EpMAN} -- a method for processing long contexts in an \textit{episodic memory} module while \textit{holistically attending to} semantically relevant context chunks. The output of \textit{episodic attention} is then used to reweigh the decoder's self-attention to the stored KV cache of the context during training and generation. When an LLM decoder is trained using \textbf{EpMAN}, its performance on multiple challenging single-hop long-context recall and question-answering benchmarks is found to be stronger and more robust across the range from 16k to 256k tokens than baseline decoders trained with self-attention, and popular retrieval-augmented generation frameworks.
Abstract:Pre-trained vision-language models are able to interpret visual concepts and language semantics. Prompt learning, a method of constructing prompts for text encoders or image encoders, elicits the potentials of pre-trained models and readily adapts them to new scenarios. Compared to fine-tuning, prompt learning enables the model to achieve comparable or better performance using fewer trainable parameters. Besides, prompt learning freezes the pre-trained model and avoids the catastrophic forgetting issue in the fine-tuning. Continuous prompts inserted into the input of every transformer layer (i.e. deep prompts) can improve the performances of pre-trained models on downstream tasks. For i-th transformer layer, the inserted prompts replace previously inserted prompts in the $(i-1)$-th layer. Although the self-attention mechanism contextualizes newly inserted prompts for the current layer and embeddings from the previous layer's output, removing all inserted prompts from the previous layer inevitably loses information contained in the continuous prompts. In this work, we propose Modular Prompt Learning (MPL) that is designed to promote the preservation of information contained in the inserted prompts. We evaluate the proposed method on base-to-new generalization and cross-dataset tasks. On average of 11 datasets, our method achieves 0.7% performance gain on the base-to-new generalization task compared to the state-of-the-art method. The largest improvement on the individual dataset is 10.7% (EuroSAT dataset).
Abstract:Prompt learning is an effective way to exploit the potential of large-scale pre-trained foundational models. Continuous prompts parameterize context tokens in prompts by turning them into differentiable vectors. Deep continuous prompts insert prompts not only in the input but also in the intermediate hidden representations. Manually designed deep continuous prompts exhibit a remarkable improvement compared to the zero-shot pre-trained model on downstream tasks. How to automate the continuous prompt design is an underexplored area, and a fundamental question arises, is manually designed deep prompt strategy optimal? To answer this question, we propose a method dubbed differentiable prompt learning (DPL). The DPL method is formulated as an optimization problem to automatically determine the optimal context length of the prompt to be added to each layer, where the objective is to maximize the performance. We test the DPL method on the pre-trained CLIP. We empirically find that by using only limited data, our DPL method can find deep continuous prompt configuration with high confidence. The performance on the downstream tasks exhibits the superiority of the automatic design: our method boosts the average test accuracy by 2.60% on 11 datasets compared to baseline methods. Besides, our method focuses only on the prompt configuration (i.e. context length for each layer), which means that our method is compatible with the baseline methods that have sophisticated designs to boost the performance. The DPL method can be deployed to large language models or computer vision models at no cost.
Abstract:We introduce the Granite Guardian models, a suite of safeguards designed to provide risk detection for prompts and responses, enabling safe and responsible use in combination with any large language model (LLM). These models offer comprehensive coverage across multiple risk dimensions, including social bias, profanity, violence, sexual content, unethical behavior, jailbreaking, and hallucination-related risks such as context relevance, groundedness, and answer relevance for retrieval-augmented generation (RAG). Trained on a unique dataset combining human annotations from diverse sources and synthetic data, Granite Guardian models address risks typically overlooked by traditional risk detection models, such as jailbreaks and RAG-specific issues. With AUC scores of 0.871 and 0.854 on harmful content and RAG-hallucination-related benchmarks respectively, Granite Guardian is the most generalizable and competitive model available in the space. Released as open-source, Granite Guardian aims to promote responsible AI development across the community. https://github.com/ibm-granite/granite-guardian
Abstract:Reducing the likelihood of generating harmful and toxic output is an essential task when aligning large language models (LLMs). Existing methods mainly rely on training an external reward model (i.e., another language model) or fine-tuning the LLM using self-generated data to influence the outcome. In this paper, we show that LLMs have the capability of self-detoxification without the use of an additional reward model or re-training. We propose \textit{Self-disciplined Autoregressive Sampling (SASA)}, a lightweight controlled decoding algorithm for toxicity reduction of LLMs. SASA leverages the contextual representations from an LLM to learn linear subspaces characterizing toxic v.s. non-toxic output in analytical forms. When auto-completing a response token-by-token, SASA dynamically tracks the margin of the current output to steer the generation away from the toxic subspace, by adjusting the autoregressive sampling strategy. Evaluated on LLMs of different scale and nature, namely Llama-3.1-Instruct (8B), Llama-2 (7B), and GPT2-L models with the RealToxicityPrompts, BOLD, and AttaQ benchmarks, SASA markedly enhances the quality of the generated sentences relative to the original models and attains comparable performance to state-of-the-art detoxification techniques, significantly reducing the toxicity level by only using the LLM's internal representations.
Abstract:Enterprises have a growing need to identify relevant tables in data lakes; e.g. tables that are unionable, joinable, or subsets of each other. Tabular neural models can be helpful for such data discovery tasks. In this paper, we present TabSketchFM, a neural tabular model for data discovery over data lakes. First, we propose a novel pre-training sketch-based approach to enhance the effectiveness of data discovery techniques in neural tabular models. Second, to further finetune the pretrained model for several downstream tasks, we develop LakeBench, a collection of 8 benchmarks to help with different data discovery tasks such as finding tasks that are unionable, joinable, or subsets of each other. We then show on these finetuning tasks that TabSketchFM achieves state-of-the art performance compared to existing neural models. Third, we use these finetuned models to search for tables that are unionable, joinable, or can be subsets of each other. Our results demonstrate improvements in F1 scores for search compared to state-of-the-art techniques (even up to 70% improvement in a joinable search benchmark). Finally, we show significant transfer across datasets and tasks establishing that our model can generalize across different tasks over different data lakes
Abstract:Estimating uncertainty or confidence in the responses of a model can be significant in evaluating trust not only in the responses, but also in the model as a whole. In this paper, we explore the problem of estimating confidence for responses of large language models (LLMs) with simply black-box or query access to them. We propose a simple and extensible framework where, we engineer novel features and train a (interpretable) model (viz. logistic regression) on these features to estimate the confidence. We empirically demonstrate that our simple framework is effective in estimating confidence of flan-ul2, llama-13b and mistral-7b with it consistently outperforming existing black-box confidence estimation approaches on benchmark datasets such as TriviaQA, SQuAD, CoQA and Natural Questions by even over $10\%$ (on AUROC) in some cases. Additionally, our interpretable approach provides insight into features that are predictive of confidence, leading to the interesting and useful discovery that our confidence models built for one LLM generalize zero-shot across others on a given dataset.
Abstract:Neural architecture search (NAS) enables the automatic design of neural network models. However, training the candidates generated by the search algorithm for performance evaluation incurs considerable computational overhead. Our method, dubbed nasgraph, remarkably reduces the computational costs by converting neural architectures to graphs and using the average degree, a graph measure, as the proxy in lieu of the evaluation metric. Our training-free NAS method is data-agnostic and light-weight. It can find the best architecture among 200 randomly sampled architectures from NAS-Bench201 in 217 CPU seconds. Besides, our method is able to achieve competitive performance on various datasets including NASBench-101, NASBench-201, and NDS search spaces. We also demonstrate that nasgraph generalizes to more challenging tasks on Micro TransNAS-Bench-101.
Abstract:Pretrained Language Models (PLMs) have become the de facto starting point for fine-tuning on downstream tasks. However, as model sizes continue to increase, traditional fine-tuning of all parameters becomes challenging. To address this, parameter-efficient fine-tuning (PEFT) methods have gained popularity as a means to adapt PLMs effectively. In parallel, recent studies have revealed the presence of activation sparsity within the intermediate outputs of the multilayer perception (MLP) blocks in transformers. Low activation density enables efficient model inference on sparsity-aware hardware. Building upon this insight, in this work, we propose a novel density loss that encourages higher activation sparsity (equivalently, lower activation density) in the pre-trained models. We demonstrate the effectiveness of our approach by utilizing mainstream PEFT techniques including QLoRA, LoRA, Adapter, Prompt/Prefix Tuning to facilitate efficient model adaptation across diverse downstream tasks. Experiments show that our proposed method DEFT, Density-Efficient Fine-Tuning, can reduce the activation density consistently and up to $\boldsymbol{50.72\%}$ on RoBERTa$_\mathrm{Large}$, and $\boldsymbol {53.19\%}$ (encoder density) and $\boldsymbol{90.60\%}$ (decoder density) on Flan-T5$_\mathrm{XXL}$ ($\boldsymbol{11B}$) compared to PEFT using GLUE and QA (SQuAD) benchmarks respectively while maintaining competitive performance on downstream tasks. We also showcase that DEFT works complementary with quantized and pruned models
Abstract:Within enterprises, there is a growing need to intelligently navigate data lakes, specifically focusing on data discovery. Of particular importance to enterprises is the ability to find related tables in data repositories. These tables can be unionable, joinable, or subsets of each other. There is a dearth of benchmarks for these tasks in the public domain, with related work targeting private datasets. In LakeBench, we develop multiple benchmarks for these tasks by using the tables that are drawn from a diverse set of data sources such as government data from CKAN, Socrata, and the European Central Bank. We compare the performance of 4 publicly available tabular foundational models on these tasks. None of the existing models had been trained on the data discovery tasks that we developed for this benchmark; not surprisingly, their performance shows significant room for improvement. The results suggest that the establishment of such benchmarks may be useful to the community to build tabular models usable for data discovery in data lakes.