Abstract:This paper considers the problem of combinatorial multi-armed bandits with semi-bandit feedback and a cardinality constraint on the super-arm size. Existing algorithms for solving this problem typically involve two key sub-routines: (1) a parameter estimation routine that sequentially estimates a set of base-arm parameters, and (2) a super-arm selection policy for selecting a subset of base arms deemed optimal based on these parameters. State-of-the-art algorithms assume access to an exact oracle for super-arm selection with unbounded computational power. At each instance, this oracle evaluates a list of score functions, the number of which grows as low as linearly and as high as exponentially with the number of arms. This can be prohibitive in the regime of a large number of arms. This paper introduces a novel realistic alternative to the perfect oracle. This algorithm uses a combination of group-testing for selecting the super arms and quantized Thompson sampling for parameter estimation. Under a general separability assumption on the reward function, the proposed algorithm reduces the complexity of the super-arm-selection oracle to be logarithmic in the number of base arms while achieving the same regret order as the state-of-the-art algorithms that use exact oracles. This translates to at least an exponential reduction in complexity compared to the oracle-based approaches.
Abstract:We present ALT (ALignment with Textual feedback), an approach that aligns language models with user preferences expressed in text. We argue that text offers greater expressiveness, enabling users to provide richer feedback than simple comparative preferences and this richer feedback can lead to more efficient and effective alignment. ALT aligns the model by conditioning its generation on the textual feedback. Our method relies solely on language modeling techniques and requires minimal hyper-parameter tuning, though it still presents the main benefits of RL-based alignment algorithms and can effectively learn from textual feedback. We explore the efficacy and efficiency of textual feedback across different tasks such as toxicity reduction, summarization, and dialog response generation. We find that ALT outperforms PPO for the task of toxicity reduction while being able to match its performance on summarization with only 20% of the samples. We also explore how ALT can be used with feedback provided by an existing LLM where we explore an LLM providing constrained and unconstrained textual feedback. We also outline future directions to align models with natural language feedback.
Abstract:CTBench is introduced as a benchmark to assess language models (LMs) in aiding clinical study design. Given study-specific metadata, CTBench evaluates AI models' ability to determine the baseline features of a clinical trial (CT), which include demographic and relevant features collected at the trial's start from all participants. These baseline features, typically presented in CT publications (often as Table 1), are crucial for characterizing study cohorts and validating results. Baseline features, including confounders and covariates, are also necessary for accurate treatment effect estimation in studies involving observational data. CTBench consists of two datasets: "CT-Repo," containing baseline features from 1,690 clinical trials sourced from clinicaltrials.gov, and "CT-Pub," a subset of 100 trials with more comprehensive baseline features gathered from relevant publications. Two LM-based evaluation methods are developed to compare the actual baseline feature lists against LM-generated responses. "ListMatch-LM" and "ListMatch-BERT" use GPT-4o and BERT scores (at various thresholds), respectively, for evaluation. To establish baseline results, advanced prompt engineering techniques using LLaMa3-70B-Instruct and GPT-4o in zero-shot and three-shot learning settings are applied to generate potential baseline features. The performance of GPT-4o as an evaluator is validated through human-in-the-loop evaluations on the CT-Pub dataset, where clinical experts confirm matches between actual and LM-generated features. The results highlight a promising direction with significant potential for improvement, positioning CTBench as a useful tool for advancing research on AI in CT design and potentially enhancing the efficacy and robustness of CTs.
Abstract:Interactive fiction games have emerged as an important application to improve the generalization capabilities of language-based reinforcement learning (RL) agents. Existing environments for interactive fiction games are domain-specific or time-consuming to generate and do not train the RL agents to master a specific set of skills. In this work, we introduce an interactive environment for self-supervised RL, STARLING, for text-based games that bootstraps the text-based RL agents with automatically generated games (based on the seed set of game ideas) to boost the performance and generalization capabilities to reach a goal of the target environment. These games let the agent hone their skills on a predefined set of tasks. We create and test an environment with 100 games, generated using this automated framework that uses large language models (GPT-3) and an interactive fiction game engine (based on Inform7) to provide the user with the ability to generate more games under minimal human supervision. Experimental results based on both the human participants and baseline text-based RL agents reveal that current state-of-the-art text-based RL agents cannot use previously learned skills in new situations at the level humans can. These results enforce STARLING's potential to serve as a sandbox environment for further research in self-supervised text-based RL.
Abstract:While humans increasingly rely on large language models (LLMs), they are susceptible to generating inaccurate or false information, also known as "hallucinations". Technical advancements have been made in algorithms that detect hallucinated content by assessing the factuality of the model's responses and attributing sections of those responses to specific source documents. However, there is limited research on how to effectively communicate this information to users in ways that will help them appropriately calibrate their trust toward LLMs. To address this issue, we conducted a scenario-based study (N=104) to systematically compare the impact of various design strategies for communicating factuality and source attribution on participants' ratings of trust, preferences, and ease in validating response accuracy. Our findings reveal that participants preferred a design in which phrases within a response were color-coded based on the computed factuality scores. Additionally, participants increased their trust ratings when relevant sections of the source material were highlighted or responses were annotated with reference numbers corresponding to those sources, compared to when they received no annotation in the source material. Our study offers practical design guidelines to facilitate human-LLM collaboration and it promotes a new human role to carefully evaluate and take responsibility for their use of LLM outputs.
Abstract:This paper studies the transfer reinforcement learning (RL) problem where multiple RL problems have different reward functions but share the same underlying transition dynamics. In this setting, the Q-function of each RL problem (task) can be decomposed into a successor feature (SF) and a reward mapping: the former characterizes the transition dynamics, and the latter characterizes the task-specific reward function. This Q-function decomposition, coupled with a policy improvement operator known as generalized policy improvement (GPI), reduces the sample complexity of finding the optimal Q-function, and thus the SF \& GPI framework exhibits promising empirical performance compared to traditional RL methods like Q-learning. However, its theoretical foundations remain largely unestablished, especially when learning the successor features using deep neural networks (SF-DQN). This paper studies the provable knowledge transfer using SFs-DQN in transfer RL problems. We establish the first convergence analysis with provable generalization guarantees for SF-DQN with GPI. The theory reveals that SF-DQN with GPI outperforms conventional RL approaches, such as deep Q-network, in terms of both faster convergence rate and better generalization. Numerical experiments on real and synthetic RL tasks support the superior performance of SF-DQN \& GPI, aligning with our theoretical findings.
Abstract:Text-based reinforcement learning involves an agent interacting with a fictional environment using observed text and admissible actions in natural language to complete a task. Previous works have shown that agents can succeed in text-based interactive environments even in the complete absence of semantic understanding or other linguistic capabilities. The success of these agents in playing such games suggests that semantic understanding may not be important for the task. This raises an important question about the benefits of LMs in guiding the agents through the game states. In this work, we show that rich semantic understanding leads to efficient training of text-based RL agents. Moreover, we describe the occurrence of semantic degeneration as a consequence of inappropriate fine-tuning of language models in text-based reinforcement learning (TBRL). Specifically, we describe the shift in the semantic representation of words in the LM, as well as how it affects the performance of the agent in tasks that are semantically similar to the training games. We believe these results may help develop better strategies to fine-tune agents in text-based RL scenarios.
Abstract:Text-based games (TBGs) have emerged as an important collection of NLP tasks, requiring reinforcement learning (RL) agents to combine natural language understanding with reasoning. A key challenge for agents attempting to solve such tasks is to generalize across multiple games and demonstrate good performance on both seen and unseen objects. Purely deep-RL-based approaches may perform well on seen objects; however, they fail to showcase the same performance on unseen objects. Commonsense-infused deep-RL agents may work better on unseen data; unfortunately, their policies are often not interpretable or easily transferable. To tackle these issues, in this paper, we present EXPLORER which is an exploration-guided reasoning agent for textual reinforcement learning. EXPLORER is neurosymbolic in nature, as it relies on a neural module for exploration and a symbolic module for exploitation. It can also learn generalized symbolic policies and perform well over unseen data. Our experiments show that EXPLORER outperforms the baseline agents on Text-World cooking (TW-Cooking) and Text-World Commonsense (TWC) games.
Abstract:Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations. Due to several limiting factors surrounding LLMs (training cost, API access, data availability, etc.), it may not always be feasible to impose direct safety constraints on a deployed model. Therefore, an efficient and reliable alternative is required. To this end, we present our ongoing efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms. In addition to the detectors themselves, we discuss a wide range of uses for these detector models - from acting as guardrails to enabling effective AI governance. We also deep dive into inherent challenges in their development and discuss future work aimed at making the detectors more reliable and broadening their scope.
Abstract:Real-world sequential decision making is characterized by sparse rewards and large decision spaces, posing significant difficulty for experiential learning systems like $\textit{tabula rasa}$ reinforcement learning (RL) agents. Large Language Models (LLMs), with a wealth of world knowledge, can help RL agents learn quickly and adapt to distribution shifts. In this work, we introduce Language Guided Exploration (LGE) framework, which uses a pre-trained language model (called GUIDE ) to provide decision-level guidance to an RL agent (called EXPLORER). We observe that on ScienceWorld (Wang et al.,2022), a challenging text environment, LGE outperforms vanilla RL agents significantly and also outperforms other sophisticated methods like Behaviour Cloning and Text Decision Transformer.