Abstract:Graphs are ubiquitous data structures found in numerous real-world applications, such as drug discovery, recommender systems, and social network analysis. Graph neural networks (GNNs) have become a popular tool to learn node embeddings through message passing on these structures. However, a significant challenge arises when applying GNNs to multiple graphs with different feature spaces, as existing GNN architectures are not designed for cross-graph feature alignment. To address this, recent approaches introduce text-attributed graphs, where each node is associated with a textual description, enabling the use of a shared textual encoder to project nodes from different graphs into a unified feature space. While promising, this method relies heavily on the availability of text-attributed data, which can be difficult to obtain in practice. To bridge this gap, we propose a novel method named Topology-Aware Node description Synthesis (TANS), which leverages large language models (LLMs) to automatically convert existing graphs into text-attributed graphs. The key idea is to integrate topological information with each node's properties, enhancing the LLMs' ability to explain how graph topology influences node semantics. We evaluate our TANS on text-rich, text-limited, and text-free graphs, demonstrating that it enables a single GNN to operate across diverse graphs. Notably, on text-free graphs, our method significantly outperforms existing approaches that manually design node features, showcasing the potential of LLMs for preprocessing graph-structured data, even in the absence of textual information. The code and data are available at https://github.com/Zehong-Wang/TANS.
Abstract:The prevalence of unhealthy eating habits has become an increasingly concerning issue in the United States. However, major food recommendation platforms (e.g., Yelp) continue to prioritize users' dietary preferences over the healthiness of their choices. Although efforts have been made to develop health-aware food recommendation systems, the personalization of such systems based on users' specific health conditions remains under-explored. In addition, few research focus on the interpretability of these systems, which hinders users from assessing the reliability of recommendations and impedes the practical deployment of these systems. In response to this gap, we first establish two large-scale personalized health-aware food recommendation benchmarks at the first attempt. We then develop a novel framework, Multi-Objective Personalized Interpretable Health-aware Food Recommendation System (MOPI-HFRS), which provides food recommendations by jointly optimizing the three objectives: user preference, personalized healthiness and nutritional diversity, along with an large language model (LLM)-enhanced reasoning module to promote healthy dietary knowledge through the interpretation of recommended results. Specifically, this holistic graph learning framework first utilizes two structure learning and a structure pooling modules to leverage both descriptive features and health data. Then it employs Pareto optimization to achieve designed multi-facet objectives. Finally, to further promote the healthy dietary knowledge and awareness, we exploit an LLM by utilizing knowledge-infusion, prompting the LLMs with knowledge obtained from the recommendation model for interpretation.
Abstract:Graph Neural Networks (GNNs) have demonstrated their effectiveness in various graph learning tasks, yet their reliance on neighborhood aggregation during inference poses challenges for deployment in latency-sensitive applications, such as real-time financial fraud detection. To address this limitation, recent studies have proposed distilling knowledge from teacher GNNs into student Multi-Layer Perceptrons (MLPs) trained on node content, aiming to accelerate inference. However, these approaches often inadequately explore structural information when inferring unseen nodes. To this end, we introduce SimMLP, a Self-supervised framework for learning MLPs on graphs, designed to fully integrate rich structural information into MLPs. Notably, SimMLP is the first MLP-learning method that can achieve equivalence to GNNs in the optimal case. The key idea is to employ self-supervised learning to align the representations encoded by graph context-aware GNNs and neighborhood dependency-free MLPs, thereby fully integrating the structural information into MLPs. We provide a comprehensive theoretical analysis, demonstrating the equivalence between SimMLP and GNNs based on mutual information and inductive bias, highlighting SimMLP's advanced structural learning capabilities. Additionally, we conduct extensive experiments on 20 benchmark datasets, covering node classification, link prediction, and graph classification, to showcase SimMLP's superiority over state-of-the-art baselines, particularly in scenarios involving unseen nodes (e.g., inductive and cold-start node classification) where structural insights are crucial. Our codes are available at: https://github.com/Zehong-Wang/SimMLP.
Abstract:Inspired by the success of foundation models in applications such as ChatGPT, as graph data has been ubiquitous, one can envision the far-reaching impacts that can be brought by Graph Foundation Models (GFMs) with broader applications in the areas such as scientific research, social network analysis, drug discovery, and e-commerce. Despite the significant progress of pre-trained graph neural networks, there haven't been GFMs that can achieve desired performance on various graph-learning-related tasks. Building GFMs may rely on a vocabulary that encodes transferable patterns shared among different tasks and domains. Unlike image and text, defining such transferable patterns for graphs remains an open question. In this paper, we aim to bridge this gap by rethinking the transferable patterns on graphs as computation trees -- i.e., tree structures derived from the message-passing process. Based on this insight, we propose a cross-task, cross-domain graph foundation model named GFT, short for Graph Foundation model with transferable Tree vocabulary. By treating computation trees as tokens within the transferable vocabulary, GFT improves model generalization and reduces the risk of negative transfer. The theoretical analyses and extensive experimental studies have demonstrated the transferability of computation trees and shown the effectiveness of GFT across diverse tasks and domains in graph learning. The open source code and data are available at https://github.com/Zehong-Wang/GFT.
Abstract:Large-scale datasets have fueled recent advancements in AI-based autonomous vehicle research. However, these datasets are usually collected from a single vehicle's one-time pass of a certain location, lacking multiagent interactions or repeated traversals of the same place. Such information could lead to transformative enhancements in autonomous vehicles' perception, prediction, and planning capabilities. To bridge this gap, in collaboration with the self-driving company May Mobility, we present the MARS dataset which unifies scenarios that enable MultiAgent, multitraveRSal, and multimodal autonomous vehicle research. More specifically, MARS is collected with a fleet of autonomous vehicles driving within a certain geographical area. Each vehicle has its own route and different vehicles may appear at nearby locations. Each vehicle is equipped with a LiDAR and surround-view RGB cameras. We curate two subsets in MARS: one facilitates collaborative driving with multiple vehicles simultaneously present at the same location, and the other enables memory retrospection through asynchronous traversals of the same location by multiple vehicles. We conduct experiments in place recognition and neural reconstruction. More importantly, MARS introduces new research opportunities and challenges such as multitraversal 3D reconstruction, multiagent perception, and unsupervised object discovery. Our data and codes can be found at https://ai4ce.github.io/MARS/.
Abstract:Humans naturally retain memories of permanent elements, while ephemeral moments often slip through the cracks of memory. This selective retention is crucial for robotic perception, localization, and mapping. To endow robots with this capability, we introduce 3D Gaussian Mapping (3DGM), a self-supervised, camera-only offline mapping framework grounded in 3D Gaussian Splatting. 3DGM converts multitraverse RGB videos from the same region into a Gaussian-based environmental map while concurrently performing 2D ephemeral object segmentation. Our key observation is that the environment remains consistent across traversals, while objects frequently change. This allows us to exploit self-supervision from repeated traversals to achieve environment-object decomposition. More specifically, 3DGM formulates multitraverse environmental mapping as a robust differentiable rendering problem, treating pixels of the environment and objects as inliers and outliers, respectively. Using robust feature distillation, feature residuals mining, and robust optimization, 3DGM jointly performs 2D segmentation and 3D mapping without human intervention. We build the Mapverse benchmark, sourced from the Ithaca365 and nuPlan datasets, to evaluate our method in unsupervised 2D segmentation, 3D reconstruction, and neural rendering. Extensive results verify the effectiveness and potential of our method for self-driving and robotics.
Abstract:Transfer learning aims to boost the learning on the target task leveraging knowledge learned from other relevant tasks. However, when the source and target are not closely related, the learning performance may be adversely affected, a phenomenon known as negative transfer. In this paper, we investigate the negative transfer in graph transfer learning, which is important yet underexplored. We reveal that, unlike image or text, negative transfer commonly occurs in graph-structured data, even when source and target graphs share semantic similarities. Specifically, we identify that structural differences significantly amplify the dissimilarities in the node embeddings across graphs. To mitigate this, we bring a new insight: for semantically similar graphs, although structural differences lead to significant distribution shift in node embeddings, their impact on subgraph embeddings could be marginal. Building on this insight, we introduce two effective yet elegant methods, Subgraph Pooling (SP) and Subgraph Pooling++ (SP++), that transfer subgraph-level knowledge across graphs. We theoretically analyze the role of SP in reducing graph discrepancy and conduct extensive experiments to evaluate its superiority under various settings. Our code and datasets are available at: https://github.com/Zehong-Wang/Subgraph-Pooling.
Abstract:Graph Neural Networks (GNNs) have demonstrated effectiveness in various graph learning tasks, yet their reliance on message-passing constraints their deployment in latency-sensitive applications such as financial fraud detection. Recent works have explored distilling knowledge from GNNs to Multi-Layer Perceptrons (MLPs) to accelerate inference. However, this task-specific supervised distillation limits generalization to unseen nodes, which are prevalent in latency-sensitive applications. To this end, we present \textbf{\textsc{SimMLP}}, a \textbf{\textsc{Sim}}ple yet effective framework for learning \textbf{\textsc{MLP}}s on graphs without supervision, to enhance generalization. \textsc{SimMLP} employs self-supervised alignment between GNNs and MLPs to capture the fine-grained and generalizable correlation between node features and graph structures, and proposes two strategies to alleviate the risk of trivial solutions. Theoretically, we comprehensively analyze \textsc{SimMLP} to demonstrate its equivalence to GNNs in the optimal case and its generalization capability. Empirically, \textsc{SimMLP} outperforms state-of-the-art baselines, especially in settings with unseen nodes. In particular, it obtains significant performance gains {\bf (7$\sim$26\%)} over MLPs and inference acceleration over GNNs {\bf (90$\sim$126$\times$)} on large-scale graph datasets. Our codes are available at: \url{https://github.com/Zehong-Wang/SimMLP}.
Abstract:Temporal graph is an abstraction for modeling dynamic systems that consist of evolving interaction elements. In this paper, we aim to solve an important yet neglected problem -- how to learn information from high-order neighbors in temporal graphs? -- to enhance the informativeness and discriminativeness for the learned node representations. We argue that when learning high-order information from temporal graphs, we encounter two challenges, i.e., computational inefficiency and over-smoothing, that cannot be solved by conventional techniques applied on static graphs. To remedy these deficiencies, we propose a temporal propagation-based graph neural network, namely TPGNN. To be specific, the model consists of two distinct components, i.e., propagator and node-wise encoder. The propagator is leveraged to propagate messages from the anchor node to its temporal neighbors within $k$-hop, and then simultaneously update the state of neighborhoods, which enables efficient computation, especially for a deep model. In addition, to prevent over-smoothing, the model compels the messages from $n$-hop neighbors to update the $n$-hop memory vector preserved on the anchor. The node-wise encoder adopts transformer architecture to learn node representations by explicitly learning the importance of memory vectors preserved on the node itself, that is, implicitly modeling the importance of messages from neighbors at different layers, thus mitigating the over-smoothing. Since the encoding process will not query temporal neighbors, we can dramatically save time consumption in inference. Extensive experiments on temporal link prediction and node classification demonstrate the superiority of TPGNN over state-of-the-art baselines in efficiency and robustness.
Abstract:Inspired by the success of contrastive learning (CL) in computer vision and natural language processing, graph contrastive learning (GCL) has been developed to learn discriminative node representations on graph datasets. However, the development of GCL on Heterogeneous Information Networks (HINs) is still in the infant stage. For example, it is unclear how to augment the HINs without substantially altering the underlying semantics, and how to design the contrastive objective to fully capture the rich semantics. Moreover, early investigations demonstrate that CL suffers from sampling bias, whereas conventional debiasing techniques are empirically shown to be inadequate for GCL. How to mitigate the sampling bias for heterogeneous GCL is another important problem. To address the aforementioned challenges, we propose a novel Heterogeneous Graph Contrastive Multi-view Learning (HGCML) model. In particular, we use metapaths as the augmentation to generate multiple subgraphs as multi-views, and propose a contrastive objective to maximize the mutual information between any pairs of metapath-induced views. To alleviate the sampling bias, we further propose a positive sampling strategy to explicitly select positives for each node via jointly considering semantic and structural information preserved on each metapath view. Extensive experiments demonstrate HGCML consistently outperforms state-of-the-art baselines on five real-world benchmark datasets.