Abstract:In this paper, we address a crucial but often overlooked issue in applying reinforcement learning (RL) to radio resource management (RRM) in wireless communications: the mismatch between the discounted reward RL formulation and the undiscounted goal of wireless network optimization. To the best of our knowledge, we are the first to systematically investigate this discrepancy, starting with a discussion of the problem formulation followed by simulations that quantify the extent of the gap. To bridge this gap, we introduce the use of average reward RL, a method that aligns more closely with the long-term objectives of RRM. We propose a new method called the Average Reward Off policy Soft Actor Critic (ARO SAC) is an adaptation of the well known Soft Actor Critic algorithm in the average reward framework. This new method achieves significant performance improvement our simulation results demonstrate a 15% gain in the system performance over the traditional discounted reward RL approach, underscoring the potential of average reward RL in enhancing the efficiency and effectiveness of wireless network optimization.
Abstract:Pre-trained Transformers, through in-context learning (ICL), have demonstrated exceptional capabilities to adapt to new tasks using example prompts \textit{without model update}. Transformer-based wireless receivers, where prompts consist of the pilot data in the form of transmitted and received signal pairs, have shown high estimation accuracy when pilot data are abundant. However, pilot information is often costly and limited in practice. In this work, we propose the \underline{DE}cision \underline{F}eedback \underline{IN}-Cont\underline{E}xt \underline{D}etection (DEFINED) solution as a new wireless receiver design, which bypasses channel estimation and directly performs symbol detection using the (sometimes extremely) limited pilot data. The key innovation in DEFINED is the proposed decision feedback mechanism in ICL, where we sequentially incorporate the detected symbols into the prompts to improve the detections for subsequent symbols. Extensive experiments across a broad range of wireless communication settings demonstrate that DEFINED achieves significant performance improvements, in some cases only needing a single pilot pair.
Abstract:Time series analysis has gained significant attention due to its critical applications in diverse fields such as healthcare, finance, and sensor networks. The complexity and non-stationarity of time series make it challenging to capture the interaction patterns across different timestamps. Current approaches struggle to model higher-order interactions within time series, and focus on learning temporal or spatial dependencies separately, which limits performance in downstream tasks. To address these gaps, we propose Higher-order Cross-structural Embedding Model for Time Series (High-TS), a novel framework that jointly models both temporal and spatial perspectives by combining multiscale Transformer with Topological Deep Learning (TDL). Meanwhile, High-TS utilizes contrastive learning to integrate these two structures for generating robust and discriminative representations. Extensive experiments show that High-TS outperforms state-of-the-art methods in various time series tasks and demonstrate the importance of higher-order cross-structural information in improving model performance.
Abstract:An intriguing property of the Transformer is its ability to perform in-context learning (ICL), where the Transformer can solve different inference tasks without parameter updating based on the contextual information provided by the corresponding input-output demonstration pairs. It has been theoretically proved that ICL is enabled by the capability of Transformers to perform gradient-descent algorithms (Von Oswald et al., 2023a; Bai et al., 2024). This work takes a step further and shows that Transformers can perform learning-to-optimize (L2O) algorithms. Specifically, for the ICL sparse recovery (formulated as LASSO) tasks, we show that a K-layer Transformer can perform an L2O algorithm with a provable convergence rate linear in K. This provides a new perspective explaining the superior ICL capability of Transformers, even with only a few layers, which cannot be achieved by the standard gradient-descent algorithms. Moreover, unlike the conventional L2O algorithms that require the measurement matrix involved in training to match that in testing, the trained Transformer is able to solve sparse recovery problems generated with different measurement matrices. Besides, Transformers as an L2O algorithm can leverage structural information embedded in the training tasks to accelerate its convergence during ICL, and generalize across different lengths of demonstration pairs, where conventional L2O algorithms typically struggle or fail. Such theoretical findings are supported by our experimental results.
Abstract:Large Language Models (LLMs) have demonstrated remarkable success across a wide range of language tasks, but their deployment on edge devices remains challenging due to the substantial memory requirements imposed by their large parameter sizes. Weight-only quantization presents a promising solution to reduce the memory footprint of LLMs. However, existing approaches primarily focus on integer-bit quantization, limiting their adaptability to fractional-bit quantization tasks and preventing the full utilization of available storage space on devices. In this paper, we introduce Channel-Wise Mixed-Precision Quantization (CMPQ), a novel mixed-precision quantization method that allocates quantization precision in a channel-wise pattern based on activation distributions. By assigning different precision levels to different weight channels, CMPQ can adapt to any bit-width constraint. CMPQ employs a non-uniform quantization strategy and incorporates two outlier extraction techniques that collaboratively preserve the critical information, thereby minimizing the quantization loss. Experiments on different sizes of LLMs demonstrate that CMPQ not only enhances performance in integer-bit quantization tasks but also achieves significant performance gains with a modest increase in memory usage. CMPQ thus represents an adaptive and effective approach to LLM quantization, offering substantial benefits across diverse device capabilities.
Abstract:Large Language Models (LLMs) rely on the contextual information embedded in examples/demonstrations to perform in-context learning (ICL). To mitigate the risk of LLMs potentially leaking private information contained in examples in the prompt, we introduce a novel data-adaptive differentially private algorithm called AdaDPSyn to generate synthetic examples from the private dataset and then use these synthetic examples to perform ICL. The objective of AdaDPSyn is to adaptively adjust the noise level in the data synthesis mechanism according to the inherent statistical properties of the data, thereby preserving high ICL accuracy while maintaining formal differential privacy guarantees. A key innovation in AdaDPSyn is the Precision-Focused Iterative Radius Reduction technique, which dynamically refines the aggregation radius - the scope of data grouping for noise addition - based on patterns observed in data clustering, thereby minimizing the amount of additive noise. We conduct extensive experiments on standard benchmarks and compare AdaDPSyn with DP few-shot generation algorithm (Tang et al., 2023). The experiments demonstrate that AdaDPSyn not only outperforms DP few-shot generation, but also maintains high accuracy levels close to those of non-private baselines, providing an effective solution for ICL with privacy protection.
Abstract:While transformers have demonstrated impressive capacities for in-context learning (ICL) in practice, theoretical understanding of the underlying mechanism enabling transformers to perform ICL is still in its infant stage. This work aims to theoretically study the training dynamics of transformers for in-context classification tasks. We demonstrate that, for in-context classification of Gaussian mixtures under certain assumptions, a single-layer transformer trained via gradient descent converges to a globally optimal model at a linear rate. We further quantify the impact of the training and testing prompt lengths on the ICL inference error of the trained transformer. We show that when the lengths of training and testing prompts are sufficiently large, the prediction of the trained transformer approaches the Bayes-optimal classifier. Experimental results corroborate the theoretical findings.
Abstract:The in-context learning (ICL) capability of pre-trained models based on the transformer architecture has received growing interest in recent years. While theoretical understanding has been obtained for ICL in reinforcement learning (RL), the previous results are largely confined to the single-agent setting. This work proposes to further explore the in-context learning capabilities of pre-trained transformer models in competitive multi-agent games, i.e., in-context game-playing (ICGP). Focusing on the classical two-player zero-sum games, theoretical guarantees are provided to demonstrate that pre-trained transformers can provably learn to approximate Nash equilibrium in an in-context manner for both decentralized and centralized learning settings. As a key part of the proof, constructional results are established to demonstrate that the transformer architecture is sufficiently rich to realize celebrated multi-agent game-playing algorithms, in particular, decentralized V-learning and centralized VI-ULCB.
Abstract:Accurate and efficient prediction of polymer properties is of key importance for polymer design. Traditional experimental tools and density function theory (DFT)-based simulations for polymer property evaluation, are both expensive and time-consuming. Recently, a gigantic amount of graph-based molecular models have emerged and demonstrated huge potential in molecular data analysis. Even with the great progresses, these models tend to ignore the high-order and mutliscale information within the data. In this paper, we develop molecular topological deep learning (Mol-TDL) for polymer property analysis. Our Mol-TDL incorporates both high-order interactions and multiscale properties into topological deep learning architecture. The key idea is to represent polymer molecules as a series of simplicial complices at different scales and build up simplical neural networks accordingly. The aggregated information from different scales provides a more accurate prediction of polymer molecular properties.
Abstract:Federated Learning (FL) can be coordinated under the orchestration of a central server to collaboratively build a privacy-preserving model without the need for data exchange. However, participant data heterogeneity leads to local optima divergence, subsequently affecting convergence outcomes. Recent research has focused on global sharpness-aware minimization (SAM) and dynamic regularization techniques to enhance consistency between global and local generalization and optimization objectives. Nonetheless, the estimation of global SAM introduces additional computational and memory overhead, while dynamic regularization suffers from bias in the local and global dual variables due to training isolation. In this paper, we propose a novel FL algorithm, FedTOGA, designed to consider optimization and generalization objectives while maintaining minimal uplink communication overhead. By linking local perturbations to global updates, global generalization consistency is improved. Additionally, global updates are used to correct local dynamic regularizers, reducing dual variables bias and enhancing optimization consistency. Global updates are passively received by clients, reducing overhead. We also propose neighborhood perturbation to approximate local perturbation, analyzing its strengths and limitations. Theoretical analysis shows FedTOGA achieves faster convergence $O(1/T)$ under non-convex functions. Empirical studies demonstrate that FedTOGA outperforms state-of-the-art algorithms, with a 1\% accuracy increase and 30\% faster convergence, achieving state-of-the-art.