Abstract:Pre-trained Transformers, through in-context learning (ICL), have demonstrated exceptional capabilities to adapt to new tasks using example prompts \textit{without model update}. Transformer-based wireless receivers, where prompts consist of the pilot data in the form of transmitted and received signal pairs, have shown high estimation accuracy when pilot data are abundant. However, pilot information is often costly and limited in practice. In this work, we propose the \underline{DE}cision \underline{F}eedback \underline{IN}-Cont\underline{E}xt \underline{D}etection (DEFINED) solution as a new wireless receiver design, which bypasses channel estimation and directly performs symbol detection using the (sometimes extremely) limited pilot data. The key innovation in DEFINED is the proposed decision feedback mechanism in ICL, where we sequentially incorporate the detected symbols into the prompts to improve the detections for subsequent symbols. Extensive experiments across a broad range of wireless communication settings demonstrate that DEFINED achieves significant performance improvements, in some cases only needing a single pilot pair.
Abstract:Distributionally robust offline reinforcement learning (RL) aims to find a policy that performs the best under the worst environment within an uncertainty set using an offline dataset collected from a nominal model. While recent advances in robust RL focus on Markov decision processes (MDPs), robust non-Markovian RL is limited to planning problem where the transitions in the uncertainty set are known. In this paper, we study the learning problem of robust offline non-Markovian RL. Specifically, when the nominal model admits a low-rank structure, we propose a new algorithm, featuring a novel dataset distillation and a lower confidence bound (LCB) design for robust values under different types of the uncertainty set. We also derive new dual forms for these robust values in non-Markovian RL, making our algorithm more amenable to practical implementation. By further introducing a novel type-I concentrability coefficient tailored for offline low-rank non-Markovian decision processes, we prove that our algorithm can find an $\epsilon$-optimal robust policy using $O(1/\epsilon^2)$ offline samples. Moreover, we extend our algorithm to the case when the nominal model does not have specific structure. With a new type-II concentrability coefficient, the extended algorithm also enjoys polynomial sample efficiency under all different types of the uncertainty set.
Abstract:An intriguing property of the Transformer is its ability to perform in-context learning (ICL), where the Transformer can solve different inference tasks without parameter updating based on the contextual information provided by the corresponding input-output demonstration pairs. It has been theoretically proved that ICL is enabled by the capability of Transformers to perform gradient-descent algorithms (Von Oswald et al., 2023a; Bai et al., 2024). This work takes a step further and shows that Transformers can perform learning-to-optimize (L2O) algorithms. Specifically, for the ICL sparse recovery (formulated as LASSO) tasks, we show that a K-layer Transformer can perform an L2O algorithm with a provable convergence rate linear in K. This provides a new perspective explaining the superior ICL capability of Transformers, even with only a few layers, which cannot be achieved by the standard gradient-descent algorithms. Moreover, unlike the conventional L2O algorithms that require the measurement matrix involved in training to match that in testing, the trained Transformer is able to solve sparse recovery problems generated with different measurement matrices. Besides, Transformers as an L2O algorithm can leverage structural information embedded in the training tasks to accelerate its convergence during ICL, and generalize across different lengths of demonstration pairs, where conventional L2O algorithms typically struggle or fail. Such theoretical findings are supported by our experimental results.
Abstract:Large Language Models (LLMs) rely on the contextual information embedded in examples/demonstrations to perform in-context learning (ICL). To mitigate the risk of LLMs potentially leaking private information contained in examples in the prompt, we introduce a novel data-adaptive differentially private algorithm called AdaDPSyn to generate synthetic examples from the private dataset and then use these synthetic examples to perform ICL. The objective of AdaDPSyn is to adaptively adjust the noise level in the data synthesis mechanism according to the inherent statistical properties of the data, thereby preserving high ICL accuracy while maintaining formal differential privacy guarantees. A key innovation in AdaDPSyn is the Precision-Focused Iterative Radius Reduction technique, which dynamically refines the aggregation radius - the scope of data grouping for noise addition - based on patterns observed in data clustering, thereby minimizing the amount of additive noise. We conduct extensive experiments on standard benchmarks and compare AdaDPSyn with DP few-shot generation algorithm (Tang et al., 2023). The experiments demonstrate that AdaDPSyn not only outperforms DP few-shot generation, but also maintains high accuracy levels close to those of non-private baselines, providing an effective solution for ICL with privacy protection.
Abstract:While transformers have demonstrated impressive capacities for in-context learning (ICL) in practice, theoretical understanding of the underlying mechanism enabling transformers to perform ICL is still in its infant stage. This work aims to theoretically study the training dynamics of transformers for in-context classification tasks. We demonstrate that, for in-context classification of Gaussian mixtures under certain assumptions, a single-layer transformer trained via gradient descent converges to a globally optimal model at a linear rate. We further quantify the impact of the training and testing prompt lengths on the ICL inference error of the trained transformer. We show that when the lengths of training and testing prompts are sufficiently large, the prediction of the trained transformer approaches the Bayes-optimal classifier. Experimental results corroborate the theoretical findings.
Abstract:The in-context learning (ICL) capability of pre-trained models based on the transformer architecture has received growing interest in recent years. While theoretical understanding has been obtained for ICL in reinforcement learning (RL), the previous results are largely confined to the single-agent setting. This work proposes to further explore the in-context learning capabilities of pre-trained transformer models in competitive multi-agent games, i.e., in-context game-playing (ICGP). Focusing on the classical two-player zero-sum games, theoretical guarantees are provided to demonstrate that pre-trained transformers can provably learn to approximate Nash equilibrium in an in-context manner for both decentralized and centralized learning settings. As a key part of the proof, constructional results are established to demonstrate that the transformer architecture is sufficiently rich to realize celebrated multi-agent game-playing algorithms, in particular, decentralized V-learning and centralized VI-ULCB.
Abstract:The construction of Vectorized High-Definition (HD) map typically requires capturing both category and geometry information of map elements. Current state-of-the-art methods often adopt solely either point-level or instance-level representation, overlooking the strong intrinsic relationships between points and instances. In this work, we propose a simple yet efficient framework named MGMapNet (Multi-Granularity Map Network) to model map element with a multi-granularity representation, integrating both coarse-grained instance-level and fine-grained point-level queries. Specifically, these two granularities of queries are generated from the multi-scale bird's eye view (BEV) features using a proposed Multi-Granularity Aggregator. In this module, instance-level query aggregates features over the entire scope covered by an instance, and the point-level query aggregates features locally. Furthermore, a Point Instance Interaction module is designed to encourage information exchange between instance-level and point-level queries. Experimental results demonstrate that the proposed MGMapNet achieves state-of-the-art performance, surpassing MapTRv2 by 5.3 mAP on nuScenes and 4.4 mAP on Argoverse2 respectively.
Abstract:Computational methods to aid journalists in the task often require adapting a model to specific domains and generating explanations. However, most automated fact-checking methods rely on three-class datasets, which do not accurately reflect real-world misinformation. Moreover, fact-checking explanations are often generated based on text summarization of evidence, failing to address the relationship between the claim and the evidence. To address these issues, we extend the self-rationalization method--typically used in natural language inference (NLI) tasks--to fact verification. We propose a label-adaptive learning approach: first, we fine-tune a model to learn veracity prediction with annotated labels (step-1 model). Then, we fine-tune the step-1 model again to learn self-rationalization, using the same data and additional annotated explanations. Our results show that our label-adaptive approach improves veracity prediction by more than ten percentage points (Macro F1) on both the PubHealth and AVeriTec datasets, outperforming the GPT-4 model. Furthermore, to address the high cost of explanation annotation, we generated 64 synthetic explanations from three large language models: GPT-4-turbo, GPT-3.5-turbo, and Llama-3-8B and few-shot fine-tune our step-1 model. The few-shot synthetic explanation fine-tuned model performed comparably to the fully fine-tuned self-rationalization model, demonstrating the potential of low-budget learning with synthetic data. Our label-adaptive self-rationalization approach presents a promising direction for future research on real-world explainable fact-checking with different labeling schemes.
Abstract:We study the problems of differentially private federated online prediction from experts against both stochastic adversaries and oblivious adversaries. We aim to minimize the average regret on $m$ clients working in parallel over time horizon $T$ with explicit differential privacy (DP) guarantees. With stochastic adversaries, we propose a Fed-DP-OPE-Stoch algorithm that achieves $\sqrt{m}$-fold speed-up of the per-client regret compared to the single-player counterparts under both pure DP and approximate DP constraints, while maintaining logarithmic communication costs. With oblivious adversaries, we establish non-trivial lower bounds indicating that collaboration among clients does not lead to regret speed-up with general oblivious adversaries. We then consider a special case of the oblivious adversaries setting, where there exists a low-loss expert. We design a new algorithm Fed-SVT and show that it achieves an $m$-fold regret speed-up under both pure DP and approximate DP constraints over the single-player counterparts. Our lower bound indicates that Fed-SVT is nearly optimal up to logarithmic factors. Experiments demonstrate the effectiveness of our proposed algorithms. To the best of our knowledge, this is the first work examining the differentially private online prediction from experts in the federated setting.
Abstract:Transformers have achieved extraordinary success in modern machine learning due to their excellent ability to handle sequential data, especially in next-token prediction (NTP) tasks. However, the theoretical understanding of their performance in NTP is limited, with existing studies focusing mainly on asymptotic performance. This paper provides a fine-grained non-asymptotic analysis of the training dynamics of a one-layer transformer consisting of a self-attention module followed by a feed-forward layer. We first characterize the essential structural properties of training datasets for NTP using a mathematical framework based on partial orders. Then, we design a two-stage training algorithm, where the pre-processing stage for training the feed-forward layer and the main stage for training the attention layer exhibit fast convergence performance. Specifically, both layers converge sub-linearly to the direction of their corresponding max-margin solutions. We also show that the cross-entropy loss enjoys a linear convergence rate. Furthermore, we show that the trained transformer presents non-trivial prediction ability with dataset shift, which sheds light on the remarkable generalization performance of transformers. Our analysis technique involves the development of novel properties on the attention gradient and further in-depth analysis of how these properties contribute to the convergence of the training process. Our experiments further validate our theoretical findings.