Abstract:Mobile edge computing (MEC) and millimeter wave (mmWave) communications are capable of significantly reducing the network's delay and enhancing its capacity. In this paper we investigate a mmWave and device-to-device (D2D) assisted MEC system, in which user A carries out some computational tasks and shares the results with user B with the aid of a base station (BS). We propose a novel two-timescale joint hybrid beamforming and task allocation algorithm to reduce the system latency whilst cut down the required signaling overhead. Specifically, the high-dimensional analog beamforming matrices are updated in a frame-based manner based on the channel state information (CSI) samples, where each frame consists of a number of time slots, while the low-dimensional digital beamforming matrices and the offloading ratio are optimized more frequently relied on the low-dimensional effective channel matrices in each time slot. A stochastic successive convex approximation (SSCA) based algorithm is developed to design the long-term analog beamforming matrices. As for the short-term variables, the digital beamforming matrices are optimized relying on the innovative penalty-concave convex procedure (penalty-CCCP) for handling the mmWave non-linear transmit power constraint, and the offloading ratio can be obtained via the derived closed-form solution. Simulation results verify the effectiveness of the proposed algorithm by comparing the benchmarks.
Abstract:In this paper, we investigate an intelligent reflecting surface (IRS) assisted multi-user multiple-input multiple-output (MIMO) full-duplex (FD) system. We jointly optimize the active beamforming matrices at the access point (AP) and uplink users, and the passive beamforming matrix at the IRS to maximize the weighted sum-rate of the system. Since it is practically difficult to acquire the channel state information (CSI) for IRS-related links due to its passive operation and large number of elements, we conceive a mixed-timescale beamforming scheme. Specifically, the high-dimensional passive beamforming matrix at the IRS is updated based on the channel statistics while the active beamforming matrices are optimized relied on the low-dimensional real-time effective CSI at each time slot. We propose an efficient stochastic successive convex approximation (SSCA)-based algorithm for jointly designing the active and passive beamforming matrices. Moreover, due to the high computational complexity caused by the matrix inversion computation in the SSCA-based optimization algorithm, we further develop a deep-unfolding neural network (NN) to address this issue. The proposed deep-unfolding NN maintains the structure of the SSCA-based algorithm but introduces a novel non-linear activation function and some learnable parameters induced by the first-order Taylor expansion to approximate the matrix inversion. In addition, we develop a black-box NN as a benchmark. Simulation results show that the proposed mixed-timescale algorithm outperforms the existing single-timescale algorithm and the proposed deep-unfolding NN approaches the performance of the SSCA-based algorithm with much reduced computational complexity when deployed online.
Abstract:In this letter, we investigate an intelligent reflecting surface (IRS) aided device-to-device (D2D) offloading system, where an IRS is employed to assist in computation offloading from a group of users with intensive tasks to another group of idle users. We propose a new two-timescale joint passive beamforming and resource allocation algorithm based on stochastic successive convex approximation to minimize the system latency while cutting down the heavy overhead in exchange of channel state information (CSI). Specifically, the high-dimensional passive beamforming vector at the IRS is updated in a frame-based manner based on the channel statistics, where each frame consists of a number of time slots, while the offloading ratio and user matching strategy are optimized relied on the low-dimensional real-time effective channel coefficients in each time slot. The convergence property and the computational complexity of the proposed algorithm are also examined. Simulation results show that our proposed algorithm significantly outperforms the conventional benchmarks.
Abstract:The millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) systems with discrete lens arrays (DLA) have received great attention due to their simple hardware implementation and excellent performance. In this work, we investigate the joint design of beam selection and digital precoding matrices for mmWave MU-MIMO systems with DLA to maximize the sum-rate subject to the transmit power constraint and the constraints of the selection matrix structure. The investigated non-convex problem with discrete variables and coupled constraints is challenging to solve and an efficient framework of joint neural network (NN) design is proposed to tackle it. Specifically, the proposed framework consists of a deep reinforcement learning (DRL)-based NN and a deep-unfolding NN, which are employed to optimize the beam selection and digital precoding matrices, respectively. As for the DRL-based NN, we formulate the beam selection problem as a Markov decision process and a double deep Q-network algorithm is developed to solve it. The base station is considered to be an agent, where the state, action, and reward function are carefully designed. Regarding the design of the digital precoding matrix, we develop an iterative weighted minimum mean-square error algorithm induced deep-unfolding NN, which unfolds this algorithm into a layerwise structure with introduced trainable parameters. Simulation results verify that this jointly trained NN remarkably outperforms the existing iterative algorithms with reduced complexity and stronger robustness.