Abstract:Lossy image compression is essential for Mars exploration missions, due to the limited bandwidth between Earth and Mars. However, the compression may introduce visual artifacts that complicate the geological analysis of the Martian surface. Existing quality enhancement approaches, primarily designed for Earth images, fall short for Martian images due to a lack of consideration for the unique Martian semantics. In response to this challenge, we conduct an in-depth analysis of Martian images, yielding two key insights based on semantics: the presence of texture similarities and the compact nature of texture representations in Martian images. Inspired by these findings, we introduce MarsQE, an innovative, semantic-informed, two-phase quality enhancement approach specifically designed for Martian images. The first phase involves the semantic-based matching of texture-similar reference images, and the second phase enhances image quality by transferring texture patterns from these reference images to the compressed image. We also develop a post-enhancement network to further reduce compression artifacts and achieve superior compression quality. Our extensive experiments demonstrate that MarsQE significantly outperforms existing approaches for Earth images, establishing a new benchmark for the quality enhancement on Martian images.
Abstract:Existing quality enhancement methods for compressed images focus on aligning the enhancement domain with the raw domain to yield realistic images. However, these methods exhibit a pervasive enhancement bias towards the compression domain, inadvertently regarding it as more realistic than the raw domain. This bias makes enhanced images closely resemble their compressed counterparts, thus degrading their perceptual quality. In this paper, we propose a simple yet effective method to mitigate this bias and enhance the quality of compressed images. Our method employs a conditional discriminator with the compressed image as a key condition, and then incorporates a domain-divergence regularization to actively distance the enhancement domain from the compression domain. Through this dual strategy, our method enables the discrimination against the compression domain, and brings the enhancement domain closer to the raw domain. Comprehensive quality evaluations confirm the superiority of our method over other state-of-the-art methods without incurring inference overheads.
Abstract:Image defocus is inherent in the physics of image formation caused by the optical aberration of lenses, providing plentiful information on image quality. Unfortunately, the existing quality enhancement approaches for compressed images neglect the inherent characteristic of defocus, resulting in inferior performance. This paper finds that in compressed images, the significantly defocused regions are with better compression quality and two regions with different defocus values possess diverse texture patterns. These findings motivate our defocus-aware quality enhancement (DAQE) approach. Specifically, we propose a novel dynamic region-based deep learning architecture of the DAQE approach, which considers the region-wise defocus difference of compressed images in two aspects. (1) The DAQE approach employs fewer computational resources to enhance the quality of significantly defocused regions, while more resources on enhancing the quality of other regions; (2) The DAQE approach learns to separately enhance diverse texture patterns for the regions with different defocus values, such that texture-wise one-on-one enhancement can be achieved. Extensive experiments validate the superiority of our DAQE approach in terms of quality enhancement and resource-saving, compared with other state-of-the-art approaches.
Abstract:This paper reviews the NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video. In this challenge, we proposed the LDV 2.0 dataset, which includes the LDV dataset (240 videos) and 95 additional videos. This challenge includes three tracks. Track 1 aims at enhancing the videos compressed by HEVC at a fixed QP. Track 2 and Track 3 target both the super-resolution and quality enhancement of HEVC compressed video. They require x2 and x4 super-resolution, respectively. The three tracks totally attract more than 600 registrations. In the test phase, 8 teams, 8 teams and 12 teams submitted the final results to Tracks 1, 2 and 3, respectively. The proposed methods and solutions gauge the state-of-the-art of super-resolution and quality enhancement of compressed video. The proposed LDV 2.0 dataset is available at https://github.com/RenYang-home/LDV_dataset. The homepage of this challenge (including open-sourced codes) is at https://github.com/RenYang-home/NTIRE22_VEnh_SR.
Abstract:As a widely studied task, video restoration aims to enhance the quality of the videos with multiple potential degradations, such as noises, blurs and compression artifacts. Among video restorations, compressed video quality enhancement and video super-resolution are two of the main tacks with significant values in practical scenarios. Recently, recurrent neural networks and transformers attract increasing research interests in this field, due to their impressive capability in sequence-to-sequence modeling. However, the training of these models is not only costly but also relatively hard to converge, with gradient exploding and vanishing problems. To cope with these problems, we proposed a two-stage framework including a multi-frame recurrent network and a single-frame transformer. Besides, multiple training strategies, such as transfer learning and progressive training, are developed to shorten the training time and improve the model performance. Benefiting from the above technical contributions, our solution wins two champions and a runner-up in the NTIRE 2022 super-resolution and quality enhancement of compressed video challenges.
Abstract:Lossy image compression is pervasively conducted to save communication bandwidth, resulting in undesirable compression artifacts. Recently, extensive approaches have been proposed to reduce image compression artifacts at the decoder side; however, they require a series of architecture-identical models to process images with different quality, which are inefficient and resource-consuming. Besides, it is common in practice that compressed images are with unknown quality and it is intractable for existing approaches to select a suitable model for blind quality enhancement. In this paper, we propose a resource-efficient blind quality enhancement (RBQE) approach for compressed images. Specifically, our approach blindly and progressively enhances the quality of compressed images through a dynamic deep neural network (DNN), in which an early-exit strategy is embedded. Then, our approach can automatically decide to terminate or continue enhancement according to the assessed quality of enhanced images. Consequently, slight artifacts can be removed in a simpler and faster process, while the severe artifacts can be further removed in a more elaborate process. Extensive experiments demonstrate that our RBQE approach achieves state-of-the-art performance in terms of both blind quality enhancement and resource efficiency.
Abstract:The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, not considering the similarity between consecutive frames. Since heavy fluctuation exists across compressed video frames as investigated in this paper, frame similarity can be utilized for quality enhancement of low-quality frames by using their neighboring high-quality frames. This task can be seen as Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as the first attempt in this direction. In our approach, we firstly develop a Bidirectional Long Short-Term Memory (BiLSTM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are the input. In MF-CNN, motion between the non-PQF and PQFs is compensated by a motion compensation subnet. Subsequently, a quality enhancement subnet fuses the non-PQF and compensated PQFs, and then reduces the compression artifacts of the non-PQF. Finally, experiments validate the effectiveness and generalization ability of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video. The code of our MFQE approach is available at https://github.com/RyanXingQL/MFQE2.0.git.