Abstract:To expedite space exploration on Mars, it is indispensable to develop an efficient Martian image compression method for transmitting images through the constrained Mars-to-Earth communication channel. Although the existing learned compression methods have achieved promising results for natural images from earth, there remain two critical issues that hinder their effectiveness for Martian image compression: 1) They overlook the highly-limited computational resources on Mars; 2) They do not utilize the strong \textit{inter-image} similarities across Martian images to advance image compression performance. Motivated by our empirical analysis of the strong \textit{intra-} and \textit{inter-image} similarities from the perspective of texture, color, and semantics, we propose a reference-based Martian asymmetrical image compression (REMAC) approach, which shifts computational complexity from the encoder to the resource-rich decoder and simultaneously improves compression performance. To leverage \textit{inter-image} similarities, we propose a reference-guided entropy module and a ref-decoder that utilize useful information from reference images, reducing redundant operations at the encoder and achieving superior compression performance. To exploit \textit{intra-image} similarities, the ref-decoder adopts a deep, multi-scale architecture with enlarged receptive field size to model long-range spatial dependencies. Additionally, we develop a latent feature recycling mechanism to further alleviate the extreme computational constraints on Mars. Experimental results show that REMAC reduces encoder complexity by 43.51\% compared to the state-of-the-art method, while achieving a BD-PSNR gain of 0.2664 dB.
Abstract:Object hallucination critically undermines the reliability of Multimodal Large Language Models, often stemming from a fundamental failure in cognitive introspection, where models blindly trust linguistic priors over specific visual evidence. Existing mitigations remain limited: contrastive decoding approaches operate superficially without rectifying internal semantic misalignments, while current latent steering methods rely on static vectors that lack instance-specific precision. We introduce Vision-Language Introspection (VLI), a training-free inference framework that simulates a metacognitive self-correction process. VLI first performs Attributive Introspection to diagnose hallucination risks via probabilistic conflict detection and localize the causal visual anchors. It then employs Interpretable Bi-Causal Steering to actively modulate the inference process, dynamically isolating visual evidence from background noise while neutralizing blind confidence through adaptive calibration. VLI achieves state-of-the-art performance on advanced models, reducing object hallucination rates by 12.67% on MMHal-Bench and improving accuracy by 5.8% on POPE.
Abstract:Current Video Large Language Models (VideoLLMs) suffer from quadratic computational complexity and key-value cache scaling, due to their reliance on processing excessive redundant visual tokens. To address this problem, we propose SharpV, a minimalist and efficient method for adaptive pruning of visual tokens and KV cache. Different from most uniform compression approaches, SharpV dynamically adjusts pruning ratios based on spatial-temporal information. Remarkably, this adaptive mechanism occasionally achieves performance gains over dense models, offering a novel paradigm for adaptive pruning. During the KV cache pruning stage, based on observations of visual information degradation, SharpV prunes degraded visual features via a self-calibration manner, guided by similarity to original visual features. In this way, SharpV achieves hierarchical cache pruning from the perspective of information bottleneck, offering a new insight into VideoLLMs' information flow. Experiments on multiple public benchmarks demonstrate the superiority of SharpV. Moreover, to the best of our knowledge, SharpV is notably the first two-stage pruning framework that operates without requiring access to exposed attention scores, ensuring full compatibility with hardware acceleration techniques like Flash Attention.




Abstract:In recent years, the advancement of Graph Neural Networks (GNNs) has significantly propelled progress in Multi-View Clustering (MVC). However, existing methods face the problem of coarse-grained graph fusion. Specifically, current approaches typically generate a separate graph structure for each view and then perform weighted fusion of graph structures at the view level, which is a relatively rough strategy. To address this limitation, we present a novel Mixture of Ego-Graphs Contrastive Representation Learning (MoEGCL). It mainly consists of two modules. In particular, we propose an innovative Mixture of Ego-Graphs Fusion (MoEGF), which constructs ego graphs and utilizes a Mixture-of-Experts network to implement fine-grained fusion of ego graphs at the sample level, rather than the conventional view-level fusion. Additionally, we present the Ego Graph Contrastive Learning (EGCL) module to align the fused representation with the view-specific representation. The EGCL module enhances the representation similarity of samples from the same cluster, not merely from the same sample, further boosting fine-grained graph representation. Extensive experiments demonstrate that MoEGCL achieves state-of-the-art results in deep multi-view clustering tasks. The source code is publicly available at https://github.com/HackerHyper/MoEGCL.
Abstract:Recent endeavors to accelerate inference in Multimodal Large Language Models (MLLMs) have primarily focused on visual token compression. The effectiveness of these methods is typically assessed by measuring the accuracy drop on established benchmarks, comparing model performance before and after compression. However, these benchmarks are originally designed to assess the perception and reasoning capabilities of MLLMs, rather than to evaluate compression techniques. As a result, directly applying them to visual token compression introduces a task mismatch. Strikingly, our investigation reveals that simple image downsampling consistently outperforms many advanced compression methods across multiple widely used benchmarks. Through extensive experiments, we make the following observations: (i) Current benchmarks are noisy for the visual token compression task. (ii) Down-sampling is able to serve as a data filter to evaluate the difficulty of samples in the visual token compression task. Motivated by these findings, we introduce VTC-Bench, an evaluation framework that incorporates a data filtering mechanism to denoise existing benchmarks, thereby enabling fairer and more accurate assessment of visual token compression methods. All data and code are available at https://github.com/Chenfei-Liao/VTC-Bench.
Abstract:In recent years, Multi-View Clustering (MVC) has been significantly advanced under the influence of deep learning. By integrating heterogeneous data from multiple views, MVC enhances clustering analysis, making multi-view fusion critical to clustering performance. However, there is a problem of low-quality data in multi-view fusion. This problem primarily arises from two reasons: 1) Certain views are contaminated by noisy data. 2) Some views suffer from missing data. This paper proposes a novel Stochastic Generative Diffusion Fusion (SGDF) method to address this problem. SGDF leverages a multiple generative mechanism for the multi-view feature of each sample. It is robust to low-quality data. Building on SGDF, we further present the Generative Diffusion Contrastive Network (GDCN). Extensive experiments show that GDCN achieves the state-of-the-art results in deep MVC tasks. The source code is publicly available at https://github.com/HackerHyper/GDCN.
Abstract:Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities but often struggle with complex, multi-step mathematical reasoning, where minor errors in visual perception or logical deduction can lead to complete failure. While Process Reward Models (PRMs) offer step-by-step supervision, existing multimodal PRMs are limited to being binary verifiers that can identify but not correct errors, offering little explanatory power. To address these deficiencies, we introduce the Generative Multimodal Process Reward Model (GM-PRM), a novel paradigm that transforms the PRM from a passive judge into an active reasoning collaborator. Instead of a simple scalar score, GM-PRM provides a fine-grained, interpretable analysis of each reasoning step, evaluating its step intent, visual alignment, and logical soundness. More critically, GM-PRM is trained to generate a corrected version of the first erroneous step it identifies. This unique corrective capability enables our new test-time inference strategy, Refined Best-of-N (Refined-BoN). This framework actively enhances solution quality by using the PRM's generated correction to guide the policy model toward a more promising reasoning trajectory, thereby improving the diversity and correctness of the solution pool. We demonstrate that GM-PRM achieves state-of-the-art results on multiple multimodal math benchmarks, significantly boosting policy model performance with remarkable data efficiency, requiring only a 20K-sample training dataset. Our code will be released upon acceptance.
Abstract:Existing cyberbullying detection benchmarks were organized by the polarity of speech, such as "offensive" and "non-offensive", which were essentially hate speech detection. However, in the real world, cyberbullying often attracted widespread social attention through incidents. To address this problem, we propose a novel annotation method to construct a cyberbullying dataset that organized by incidents. The constructed CHNCI is the first Chinese cyberbullying incident detection dataset, which consists of 220,676 comments in 91 incidents. Specifically, we first combine three cyberbullying detection methods based on explanations generation as an ensemble method to generate the pseudo labels, and then let human annotators judge these labels. Then we propose the evaluation criteria for validating whether it constitutes a cyberbullying incident. Experimental results demonstrate that the constructed dataset can be a benchmark for the tasks of cyberbullying detection and incident prediction. To the best of our knowledge, this is the first study for the Chinese cyberbullying incident detection task.
Abstract:Large Language Models (LLMs), despite their remarkable capabilities, are hampered by hallucinations. A particularly challenging variant, knowledge overshadowing, occurs when one piece of activated knowledge inadvertently masks another relevant piece, leading to erroneous outputs even with high-quality training data. Current understanding of overshadowing is largely confined to inference-time observations, lacking deep insights into its origins and internal mechanisms during model training. Therefore, we introduce PhantomCircuit, a novel framework designed to comprehensively analyze and detect knowledge overshadowing. By innovatively employing knowledge circuit analysis, PhantomCircuit dissects the internal workings of attention heads, tracing how competing knowledge pathways contribute to the overshadowing phenomenon and its evolution throughout the training process. Extensive experiments demonstrate PhantomCircuit's effectiveness in identifying such instances, offering novel insights into this elusive hallucination and providing the research community with a new methodological lens for its potential mitigation.




Abstract:Aligning small language models (SLMs) with human values typically involves distilling preference knowledge from large language models (LLMs). However, existing distillation methods model preference knowledge in teacher LLMs by comparing pairwise responses, overlooking the extent of difference between responses. This limitation hinders student SLMs from capturing the nuanced preferences for multiple responses. In this paper, we propose a Preference-Aligned Distillation (PAD) framework, which models teacher's preference knowledge as a probability distribution over all potential preferences, thereby providing more nuanced supervisory signals. Our insight in developing PAD is rooted in the demonstration that language models can serve as reward functions, reflecting their intrinsic preferences. Based on this, PAD comprises three key steps: (1) sampling diverse responses using high-temperature; (2) computing rewards for both teacher and student to construct their intrinsic preference; and (3) training the student's intrinsic preference distribution to align with the teacher's. Experiments on four mainstream alignment benchmarks demonstrate that PAD consistently and significantly outperforms existing approaches, achieving over 20\% improvement on AlpacaEval 2 and Arena-Hard, indicating superior alignment with human preferences. Notably, on MT-Bench, using the \textsc{Gemma} model family, the student trained by PAD surpasses its teacher, further validating the effectiveness of our PAD.