Abstract:Quantum transport calculations are essential for understanding and designing nanoelectronic devices, yet the trade-off between accuracy and computational efficiency has long limited their practical applications. We present a general framework that combines the deep learning tight-binding Hamiltonian (DeePTB) approach with the non-equilibrium Green's Function (NEGF) method, enabling efficient quantum transport calculations while maintaining first-principles accuracy. We demonstrate the capabilities of the DeePTB-NEGF framework through two representative applications: comprehensive simulation of break junction systems, where conductance histograms show good agreement with experimental measurements in both metallic contact and single-molecule junction cases; and simulation of carbon nanotube field effect transistors through self-consistent NEGF-Poisson calculations, capturing essential physics including the electrostatic potential and transfer characteristic curves under finite bias conditions. This framework bridges the gap between first-principles accuracy and computational efficiency, providing a powerful tool for high-throughput quantum transport simulations across different scales in nanoelectronics.
Abstract:The debate between self-interpretable models and post-hoc explanations for black-box models is central to Explainable AI (XAI). Self-interpretable models, such as concept-based networks, offer insights by connecting decisions to human-understandable concepts but often struggle with performance and scalability. Conversely, post-hoc methods like Shapley values, while theoretically robust, are computationally expensive and resource-intensive. To bridge the gap between these two lines of research, we propose a novel method that combines their strengths, providing theoretically guaranteed self-interpretability for black-box models without compromising prediction accuracy. Specifically, we introduce a parameter-efficient pipeline, *AutoGnothi*, which integrates a small side network into the black-box model, allowing it to generate Shapley value explanations without changing the original network parameters. This side-tuning approach significantly reduces memory, training, and inference costs, outperforming traditional parameter-efficient methods, where full fine-tuning serves as the optimal baseline. *AutoGnothi* enables the black-box model to predict and explain its predictions with minimal overhead. Extensive experiments show that *AutoGnothi* offers accurate explanations for both vision and language tasks, delivering superior computational efficiency with comparable interpretability.
Abstract:Protecting the intellectual property of open-source Large Language Models (LLMs) is very important, because training LLMs costs extensive computational resources and data. Therefore, model owners and third parties need to identify whether a suspect model is a subsequent development of the victim model. To this end, we propose a training-free REEF to identify the relationship between the suspect and victim models from the perspective of LLMs' feature representations. Specifically, REEF computes and compares the centered kernel alignment similarity between the representations of a suspect model and a victim model on the same samples. This training-free REEF does not impair the model's general capabilities and is robust to sequential fine-tuning, pruning, model merging, and permutations. In this way, REEF provides a simple and effective way for third parties and models' owners to protect LLMs' intellectual property together. The code is available at https://github.com/tmylla/REEF.
Abstract:Diffusion transformers have shown significant effectiveness in both image and video synthesis at the expense of huge computation costs. To address this problem, feature caching methods have been introduced to accelerate diffusion transformers by caching the features in previous timesteps and reusing them in the following timesteps. However, previous caching methods ignore that different tokens exhibit different sensitivities to feature caching, and feature caching on some tokens may lead to 10$\times$ more destruction to the overall generation quality compared with other tokens. In this paper, we introduce token-wise feature caching, allowing us to adaptively select the most suitable tokens for caching, and further enable us to apply different caching ratios to neural layers in different types and depths. Extensive experiments on PixArt-$\alpha$, OpenSora, and DiT demonstrate our effectiveness in both image and video generation with no requirements for training. For instance, 2.36$\times$ and 1.93$\times$ acceleration are achieved on OpenSora and PixArt-$\alpha$ with almost no drop in generation quality.
Abstract:Diffusion models are trained by learning a sequence of models that reverse each step of noise corruption. Typically, the model parameters are fully shared across multiple timesteps to enhance training efficiency. However, since the denoising tasks differ at each timestep, the gradients computed at different timesteps may conflict, potentially degrading the overall performance of image generation. To solve this issue, this work proposes a Decouple-then-Merge (DeMe) framework, which begins with a pretrained model and finetunes separate models tailored to specific timesteps. We introduce several improved techniques during the finetuning stage to promote effective knowledge sharing while minimizing training interference across timesteps. Finally, after finetuning, these separate models can be merged into a single model in the parameter space, ensuring efficient and practical inference. Experimental results show significant generation quality improvements upon 6 benchmarks including Stable Diffusion on COCO30K, ImageNet1K, PartiPrompts, and DDPM on LSUN Church, LSUN Bedroom, and CIFAR10.
Abstract:Significant advancements in image generation have been made with diffusion models. Nevertheless, when contrasted with previous generative models, diffusion models face substantial computational overhead, leading to failure in real-time generation. Recent approaches have aimed to accelerate diffusion models by reducing the number of sampling steps through improved sampling techniques or step distillation. However, the methods to diminish the computational cost for each timestep remain a relatively unexplored area. Observing the fact that diffusion models exhibit varying input distributions and feature distributions at different timesteps, we introduce one-to-many knowledge distillation (O2MKD), which distills a single teacher diffusion model into multiple student diffusion models, where each student diffusion model is trained to learn the teacher's knowledge for a subset of continuous timesteps. Experiments on CIFAR10, LSUN Church, CelebA-HQ with DDPM and COCO30K with Stable Diffusion show that O2MKD can be applied to previous knowledge distillation and fast sampling methods to achieve significant acceleration. Codes will be released in Github.
Abstract:Dataset reduction (DR) seeks to select or distill samples from large datasets into smaller subsets while preserving performance on target tasks. Existing methods primarily focus on pruning or synthesizing data in the same format as the original dataset, typically the input data and corresponding labels. However, in DR settings, we find it is possible to synthesize more information beyond the data-label pair as an additional learning target to facilitate model training. In this paper, we introduce Dataset Reduction Using Privileged Information (DRUPI), which enriches DR by synthesizing privileged information alongside the reduced dataset. This privileged information can take the form of feature labels or attention labels, providing auxiliary supervision to improve model learning. Our findings reveal that effective feature labels must balance between being overly discriminative and excessively diverse, with a moderate level proving optimal for improving the reduced dataset's efficacy. Extensive experiments on ImageNet, CIFAR-10/100, and Tiny ImageNet demonstrate that DRUPI integrates seamlessly with existing dataset reduction methods, offering significant performance gains.
Abstract:As the body of academic literature continues to grow, researchers face increasing difficulties in effectively searching for relevant resources. Existing databases and search engines often fall short of providing a comprehensive and contextually relevant collection of academic literature. To address this issue, we propose a novel framework that leverages Natural Language Processing (NLP) techniques. This framework automates the retrieval, summarization, and clustering of academic literature within a specific research domain. To demonstrate the effectiveness of our approach, we introduce CyLit, an NLP-powered repository specifically designed for the cyber risk literature. CyLit empowers researchers by providing access to context-specific resources and enabling the tracking of trends in the dynamic and rapidly evolving field of cyber risk. Through the automatic processing of large volumes of data, our NLP-powered solution significantly enhances the efficiency and specificity of academic literature searches. We compare the literature categorization results of CyLit to those presented in survey papers or generated by ChatGPT, highlighting the distinctive insights this tool provides into cyber risk research literature. Using NLP techniques, we aim to revolutionize the way researchers discover, analyze, and utilize academic resources, ultimately fostering advancements in various domains of knowledge.
Abstract:A force field as accurate as quantum mechanics (QM) and as fast as molecular mechanics (MM), with which one can simulate a biomolecular system efficiently enough and meaningfully enough to get quantitative insights, is among the most ardent dreams of biophysicists -- a dream, nevertheless, not to be fulfilled any time soon. Machine learning force fields (MLFFs) represent a meaningful endeavor towards this direction, where differentiable neural functions are parametrized to fit ab initio energies, and furthermore forces through automatic differentiation. We argue that, as of now, the utility of the MLFF models is no longer bottlenecked by accuracy but primarily by their speed (as well as stability and generalizability), as many recent variants, on limited chemical spaces, have long surpassed the chemical accuracy of $1$ kcal/mol -- the empirical threshold beyond which realistic chemical predictions are possible -- though still magnitudes slower than MM. Hoping to kindle explorations and designs of faster, albeit perhaps slightly less accurate MLFFs, in this review, we focus our attention on the design space (the speed-accuracy tradeoff) between MM and ML force fields. After a brief review of the building blocks of force fields of either kind, we discuss the desired properties and challenges now faced by the force field development community, survey the efforts to make MM force fields more accurate and ML force fields faster, envision what the next generation of MLFF might look like.
Abstract:Scientific literature understanding is crucial for extracting targeted information and garnering insights, thereby significantly advancing scientific discovery. Despite the remarkable success of Large Language Models (LLMs), they face challenges in scientific literature understanding, primarily due to (1) a lack of scientific knowledge and (2) unfamiliarity with specialized scientific tasks. To develop an LLM specialized in scientific literature understanding, we propose a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.cIn this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation. Applying this strategy, we present a suite of LLMs: SciLitLLM, specialized in scientific literature understanding. These models demonstrate promising performance on scientific literature understanding benchmarks. Our contributions are threefold: (1) We present an effective framework that integrates CPT and SFT to adapt LLMs to scientific literature understanding, which can also be easily adapted to other domains. (2) We propose an LLM-based synthesis method to generate diverse and high-quality scientific instructions, resulting in a new instruction set -- SciLitIns -- for supervised fine-tuning in less-represented scientific domains. (3) SciLitLLM achieves promising performance improvements on scientific literature understanding benchmarks.