Abstract:The emergence of vision-language foundation models, such as CLIP, has revolutionized image-text representation, enabling a broad range of applications via prompt learning. Despite its promise, real-world datasets often contain noisy labels that can degrade prompt learning performance. In this paper, we demonstrate that using mean absolute error (MAE) loss in prompt learning, named PromptMAE, significantly enhances robustness against noisy labels while maintaining high accuracy. Though MAE is straightforward and recognized for its robustness, it is rarely used in noisy-label learning due to its slow convergence and poor performance outside prompt learning scenarios. To elucidate the robustness of PromptMAE, we leverage feature learning theory to show that MAE can suppress the influence of noisy samples, thereby improving the signal-to-noise ratio and enhancing overall robustness. Additionally, we introduce PromptOT, a prompt-based optimal transport data purification method to enhance the robustness further. PromptOT employs text encoder representations in vision-language models as prototypes to construct an optimal transportation matrix. This matrix effectively partitions datasets into clean and noisy subsets, allowing for the application of cross-entropy loss to the clean subset and MAE loss to the noisy subset. Our Noise-Label Prompt Learning method, named NLPrompt, offers a simple and efficient approach that leverages the expressive representation and precise alignment capabilities of vision-language models for robust prompt learning. We validate NLPrompt through extensive experiments across various noise settings, demonstrating significant performance improvements.
Abstract:Quantitative analysis of animal behavior and biomechanics requires accurate animal pose and shape estimation across species, and is important for animal welfare and biological research. However, the small network capacity of previous methods and limited multi-species dataset leave this problem underexplored. To this end, this paper presents AniMer to estimate animal pose and shape using family aware Transformer, enhancing the reconstruction accuracy of diverse quadrupedal families. A key insight of AniMer is its integration of a high-capacity Transformer-based backbone and an animal family supervised contrastive learning scheme, unifying the discriminative understanding of various quadrupedal shapes within a single framework. For effective training, we aggregate most available open-sourced quadrupedal datasets, either with 3D or 2D labels. To improve the diversity of 3D labeled data, we introduce CtrlAni3D, a novel large-scale synthetic dataset created through a new diffusion-based conditional image generation pipeline. CtrlAni3D consists of about 10k images with pixel-aligned SMAL labels. In total, we obtain 41.3k annotated images for training and validation. Consequently, the combination of a family aware Transformer network and an expansive dataset enables AniMer to outperform existing methods not only on 3D datasets like Animal3D and CtrlAni3D, but also on out-of-distribution Animal Kingdom dataset. Ablation studies further demonstrate the effectiveness of our network design and CtrlAni3D in enhancing the performance of AniMer for in-the-wild applications. The project page of AniMer is https://luoxue-star.github.io/AniMer_project_page/.
Abstract:The increasing concern for data privacy has driven the rapid development of federated learning (FL), a privacy-preserving collaborative paradigm. However, the statistical heterogeneity among clients in FL results in inconsistent performance of the server model across various clients. Server model may show favoritism towards certain clients while performing poorly for others, heightening the challenge of fairness. In this paper, we reconsider the inconsistency in client performance distribution and introduce the concept of adversarial multi-armed bandit to optimize the proposed objective with explicit constraints on performance disparities. Practically, we propose a novel multi-armed bandit-based allocation FL algorithm (FedMABA) to mitigate performance unfairness among diverse clients with different data distributions. Extensive experiments, in different Non-I.I.D. scenarios, demonstrate the exceptional performance of FedMABA in enhancing fairness.
Abstract:Domain Generalization (DG) aims to train models that can effectively generalize to unseen domains. However, in the context of Federated Learning (FL), where clients collaboratively train a model without directly sharing their data, most existing DG algorithms are not directly applicable to the FL setting due to privacy constraints, as well as the limited data quantity and domain diversity at each client. To tackle these challenges, we propose FedCCRL, a novel federated domain generalization method that significantly improves the model's ability to generalize to unseen domains without compromising privacy or incurring excessive computational and communication costs. Specifically, we adapt MixStyle to the federated setting to transfer domain-specific features while AugMix is employed to perturb domain-invariant features. Furthermore, we leverage supervised contrastive loss for representation alignment and utilize Jensen-Shannon divergence to ensure consistent predictions between original and augmented samples. Extensive experimental results demonstrate that FedCCRL achieves the state-of-the-art performances on the PACS, OfficeHome and miniDomainNet datasets across varying numbers of clients. Code is available at https://github.com/SanphouWang/FedCCRL.
Abstract:Multimodal Large Language Models (MLLMs) demonstrate a strong understanding of the real world and can even handle complex tasks. However, they still fail on some straightforward visual question-answering (VQA) problems. This paper dives deeper into this issue, revealing that models tend to err when answering easy questions (e.g. Yes/No questions) about an image, even though they can correctly describe it. We refer to this model behavior discrepancy between difficult and simple questions as model laziness. To systematically investigate model laziness, we manually construct LazyBench, a benchmark that includes Yes/No, multiple choice, short answer questions, and image description tasks that are related to the same subjects in the images. Based on LazyBench, we observe that laziness widely exists in current advanced MLLMs (e.g. GPT-4o, Gemini-1.5-pro, Claude 3 and LLaVA-v1.5-13B), and it is more pronounced on stronger models. We also analyze the VQA v2 (LLaVA-v1.5-13B) benchmark and find that about half of its failure cases are caused by model laziness, which further highlights the importance of ensuring that the model fully utilizes its capability. To this end, we conduct preliminary exploration on how to mitigate laziness and find that chain of thought (CoT) can effectively address this issue.
Abstract:Video Temporal Grounding (VTG) is a crucial capability for video understanding models and plays a vital role in downstream tasks such as video browsing and editing. To effectively handle various tasks simultaneously and enable zero-shot prediction, there is a growing trend in employing video LLMs for VTG tasks. However, current video LLM-based methods rely exclusively on natural language generation, lacking the ability to model the clear structure inherent in videos, which restricts their effectiveness in tackling VTG tasks. To address this issue, this paper first formally introduces causal event modeling framework, which represents videos as sequences of events, and predict the current event using previous events, video inputs, and textural instructions. Each event consists of three components: timestamps, salient scores, and textual captions. We then propose a novel task-interleaved video LLM called TRACE to effectively implement the causal event modeling framework in practice. The TRACE processes visual frames, timestamps, salient scores, and text as distinct tasks, employing various encoders and decoding heads for each. Task tokens are arranged in an interleaved sequence according to the causal event modeling framework's formulation. Extensive experiments on various VTG tasks and datasets demonstrate the superior performance of TRACE compared to state-of-the-art video LLMs. Our model and code are available at \url{https://github.com/gyxxyg/TRACE}.
Abstract:The success of large-scale pre-trained models has established fine-tuning as a standard method for achieving significant improvements in downstream tasks. However, fine-tuning the entire parameter set of a pre-trained model is costly. Parameter-efficient transfer learning (PETL) has recently emerged as a cost-effective alternative for adapting pre-trained models to downstream tasks. Despite its advantages, the increasing model size and input resolution present challenges for PETL, as the training memory consumption is not reduced as effectively as the parameter usage. In this paper, we introduce Fine-grained Prompt Tuning plus (FPT+), a PETL method designed for high-resolution medical image classification, which significantly reduces memory consumption compared to other PETL methods. FPT+ performs transfer learning by training a lightweight side network and accessing pre-trained knowledge from a large pre-trained model (LPM) through fine-grained prompts and fusion modules. Specifically, we freeze the LPM and construct a learnable lightweight side network. The frozen LPM processes high-resolution images to extract fine-grained features, while the side network employs the corresponding down-sampled low-resolution images to minimize the memory usage. To enable the side network to leverage pre-trained knowledge, we propose fine-grained prompts and fusion modules, which collaborate to summarize information through the LPM's intermediate activations. We evaluate FPT+ on eight medical image datasets of varying sizes, modalities, and complexities. Experimental results demonstrate that FPT+ outperforms other PETL methods, using only 1.03% of the learnable parameters and 3.18% of the memory required for fine-tuning an entire ViT-B model. Our code is available at https://github.com/YijinHuang/FPT.
Abstract:Federated Learning (FL) is gaining widespread interest for its ability to share knowledge while preserving privacy and reducing communication costs. Unlike Centralized FL, Decentralized FL (DFL) employs a network architecture that eliminates the need for a central server, allowing direct communication among clients and leading to significant communication resource savings. However, due to data heterogeneity, not all neighboring nodes contribute to enhancing the local client's model performance. In this work, we introduce \textbf{\emph{AFIND+}}, a simple yet efficient algorithm for sampling and aggregating neighbors in DFL, with the aim of leveraging collaboration to improve clients' model performance. AFIND+ identifies helpful neighbors, adaptively adjusts the number of selected neighbors, and strategically aggregates the sampled neighbors' models based on their contributions. Numerical results on real-world datasets with diverse data partitions demonstrate that AFIND+ outperforms other sampling algorithms in DFL and is compatible with most existing DFL optimization algorithms.
Abstract:The advent of large language models (LLMs) has revolutionized the deep learning paradigm, yielding impressive results across a wide array of tasks. However, the pre-training or fine-tuning of LLMs within a federated learning (FL) framework poses substantial challenges, including considerable computational and memory resource demands, as well as communication bottlenecks between servers and clients. Existing solutions either make the unrealistic assumption that the entire model is exchanged for training, or apply parameter-effective fine-tuning methods from centralized learning to train LLMs in FL which tend to underperform during training or fine-tuning stages due to the limited search subspace of parameter updating. In this paper, we introduce a novel method for the efficient training and fine-tuning of LLMs in FL, with minimal resource consumption. Our approach, termed FedCyBGD, utilizes Cycle Block Gradient Descent to periodically update the model. In particular, we design a compression scheme for FedCyBGD, aiming to further decrease the model download cost. It enables full parameter training in FL with only selected block updates and uploads, thereby reducing communication, computation, and memory costs. Our method achieves state-of-the-art performance for FL LLM training, while significantly reducing associated costs. Codes are provided here.
Abstract:Medical image datasets often exhibit long-tailed distributions due to the inherent challenges in medical data collection and annotation. In long-tailed contexts, some common disease categories account for most of the data, while only a few samples are available in the rare disease categories, resulting in poor performance of deep learning methods. To address this issue, previous approaches have employed class re-sampling or re-weighting techniques, which often encounter challenges such as overfitting to tail classes or difficulties in optimization during training. In this work, we propose a novel approach, namely \textbf{S}aliency-guided and \textbf{P}atch-based \textbf{Mix}up (SPMix) for long-tailed skin cancer image classification. Specifically, given a tail-class image and a head-class image, we generate a new tail-class image by mixing them under the guidance of saliency mapping, which allows for preserving and augmenting the discriminative features of the tail classes without any interference of the head-class features. Extensive experiments are conducted on the ISIC2018 dataset, demonstrating the superiority of SPMix over existing state-of-the-art methods.