Abstract:Multimodal learning has been demonstrated to enhance performance across various clinical tasks, owing to the diverse perspectives offered by different modalities of data. However, existing multimodal segmentation methods rely on well-registered multimodal data, which is unrealistic for real-world clinical images, particularly for indistinct and diffuse regions such as liver tumors. In this paper, we introduce Diff4MMLiTS, a four-stage multimodal liver tumor segmentation pipeline: pre-registration of the target organs in multimodal CTs; dilation of the annotated modality's mask and followed by its use in inpainting to obtain multimodal normal CTs without tumors; synthesis of strictly aligned multimodal CTs with tumors using the latent diffusion model based on multimodal CT features and randomly generated tumor masks; and finally, training the segmentation model, thus eliminating the need for strictly aligned multimodal data. Extensive experiments on public and internal datasets demonstrate the superiority of Diff4MMLiTS over other state-of-the-art multimodal segmentation methods.
Abstract:Quantitative analysis of animal behavior and biomechanics requires accurate animal pose and shape estimation across species, and is important for animal welfare and biological research. However, the small network capacity of previous methods and limited multi-species dataset leave this problem underexplored. To this end, this paper presents AniMer to estimate animal pose and shape using family aware Transformer, enhancing the reconstruction accuracy of diverse quadrupedal families. A key insight of AniMer is its integration of a high-capacity Transformer-based backbone and an animal family supervised contrastive learning scheme, unifying the discriminative understanding of various quadrupedal shapes within a single framework. For effective training, we aggregate most available open-sourced quadrupedal datasets, either with 3D or 2D labels. To improve the diversity of 3D labeled data, we introduce CtrlAni3D, a novel large-scale synthetic dataset created through a new diffusion-based conditional image generation pipeline. CtrlAni3D consists of about 10k images with pixel-aligned SMAL labels. In total, we obtain 41.3k annotated images for training and validation. Consequently, the combination of a family aware Transformer network and an expansive dataset enables AniMer to outperform existing methods not only on 3D datasets like Animal3D and CtrlAni3D, but also on out-of-distribution Animal Kingdom dataset. Ablation studies further demonstrate the effectiveness of our network design and CtrlAni3D in enhancing the performance of AniMer for in-the-wild applications. The project page of AniMer is https://luoxue-star.github.io/AniMer_project_page/.
Abstract:The correlation between NLG automatic evaluation metrics and human evaluation is often regarded as a critical criterion for assessing the capability of an evaluation metric. However, different grouping methods and correlation coefficients result in various types of correlation measures used in meta-evaluation. In specific evaluation scenarios, prior work often directly follows conventional measure settings, but the characteristics and differences between these measures have not gotten sufficient attention. Therefore, this paper analyzes 12 common correlation measures using a large amount of real-world data from six widely-used NLG evaluation datasets and 32 evaluation metrics, revealing that different measures indeed impact the meta-evaluation results. Furthermore, we propose three perspectives that reflect the capability of meta-evaluation and find that the measure using global grouping and Pearson correlation exhibits the best overall performance, involving the discriminative power, ranking consistency, and sensitivity to score granularity.
Abstract:Accurate segmentation of tumors in PET/CT images is important in computer-aided diagnosis and treatment of cancer. The key issue of such a segmentation problem lies in the effective integration of complementary information from PET and CT images. However, the quality of PET and CT images varies widely in clinical settings, which leads to uncertainty in the modality information extracted by networks. To take the uncertainty into account in multi-modal information fusion, this paper proposes a novel Multi-modal Evidential Fusion Network (MEFN) comprising a Cross-Modal Feature Learning (CFL) module and a Multi-modal Trusted Fusion (MTF) module. The CFL module reduces the domain gap upon modality conversion and highlights common tumor features, thereby alleviating the needs of the segmentation module to handle modality specificity. The MTF module utilizes mutual attention mechanisms and an uncertainty calibrator to fuse modality features based on modality uncertainty and then fuse the segmentation results under the guidance of Dempster-Shafer Theory. Besides, a new uncertainty perceptual loss is introduced to force the model focusing on uncertain features and hence improve its ability to extract trusted modality information. Extensive comparative experiments are conducted on two publicly available PET/CT datasets to evaluate the performance of our proposed method whose results demonstrate that our MEFN significantly outperforms state-of-the-art methods with improvements of 2.15% and 3.23% in DSC scores on the AutoPET dataset and the Hecktor dataset, respectively. More importantly, our model can provide radiologists with credible uncertainty of the segmentation results for their decision in accepting or rejecting the automatic segmentation results, which is particularly important for clinical applications. Our code will be available at https://github.com/QPaws/MEFN.
Abstract:The evaluation of natural language generation (NLG) tasks is a significant and longstanding research issue. With the recent emergence of powerful large language models (LLMs), some studies have turned to LLM-based automatic evaluation methods, which demonstrate great potential to become a new evaluation paradigm following traditional string-based and model-based metrics. However, despite the improved performance of existing methods, they still possess some deficiencies, such as dependency on references and limited evaluation flexibility. Therefore, in this paper, we meticulously construct a large-scale NLG evaluation corpus NLG-Eval with human and GPT-4 annotations to alleviate the lack of relevant data in this field. Furthermore, we propose Themis, an LLM dedicated to NLG evaluation, which has been trained with our designed multi-perspective consistency and rating-oriented preference alignment methods. Themis can conduct flexible and interpretable evaluations without references, and it exhibits superior evaluation performance on various NLG tasks, simultaneously generalizing well to unseen tasks and surpassing other evaluation models, including GPT-4.
Abstract:Medical image datasets often exhibit long-tailed distributions due to the inherent challenges in medical data collection and annotation. In long-tailed contexts, some common disease categories account for most of the data, while only a few samples are available in the rare disease categories, resulting in poor performance of deep learning methods. To address this issue, previous approaches have employed class re-sampling or re-weighting techniques, which often encounter challenges such as overfitting to tail classes or difficulties in optimization during training. In this work, we propose a novel approach, namely \textbf{S}aliency-guided and \textbf{P}atch-based \textbf{Mix}up (SPMix) for long-tailed skin cancer image classification. Specifically, given a tail-class image and a head-class image, we generate a new tail-class image by mixing them under the guidance of saliency mapping, which allows for preserving and augmenting the discriminative features of the tail classes without any interference of the head-class features. Extensive experiments are conducted on the ISIC2018 dataset, demonstrating the superiority of SPMix over existing state-of-the-art methods.
Abstract:AI-generated faces have enriched human life, such as entertainment, education, and art. However, they also pose misuse risks. Therefore, detecting AI-generated faces becomes crucial, yet current detectors show biased performance across different demographic groups. Mitigating biases can be done by designing algorithmic fairness methods, which usually require demographically annotated face datasets for model training. However, no existing dataset comprehensively encompasses both demographic attributes and diverse generative methods, which hinders the development of fair detectors for AI-generated faces. In this work, we introduce the AI-Face dataset, the first million-scale demographically annotated AI-generated face image dataset, including real faces, faces from deepfake videos, and faces generated by Generative Adversarial Networks and Diffusion Models. Based on this dataset, we conduct the first comprehensive fairness benchmark to assess various AI face detectors and provide valuable insights and findings to promote the future fair design of AI face detectors. Our AI-Face dataset and benchmark code are publicly available at https://github.com/Purdue-M2/AI-Face-FairnessBench.
Abstract:Biomedical image segmentation is critical for accurate identification and analysis of anatomical structures in medical imaging, particularly in cardiac MRI. However, manual segmentation is labor-intensive, time-consuming, and prone to variability, necessitating automated methods. Current machine learning approaches, while promising, face challenges such as overfitting, high computational demands, and the need for extensive annotated data. To address these issues, we propose a UU-Mamba model that integrates the U-Mamba model with the Sharpness-Aware Minimization optimizer and an uncertainty-aware loss function. SAM enhances generalization by finding flat minima in the loss landscape, mitigating overfitting. The uncertainty-aware loss combines region-based, distribution-based, and pixel-based losses, improving segmentation accuracy and robustness. Our method, evaluated on the ACDC cardiac dataset, outperforms state-of-the-art models (TransUNet, Swin-Unet, nnUNet, nnFormer), achieving superior Dice Similarity Coefficient and Mean Squared Error results, demonstrating the effectiveness of our approach in cardiac MRI segmentation.
Abstract:Diffusion models (DMs) have revolutionized image generation, producing high-quality images with applications spanning various fields. However, their ability to create hyper-realistic images poses significant challenges in distinguishing between real and synthetic content, raising concerns about digital authenticity and potential misuse in creating deepfakes. This work introduces a robust detection framework that integrates image and text features extracted by CLIP model with a Multilayer Perceptron (MLP) classifier. We propose a novel loss that can improve the detector's robustness and handle imbalanced datasets. Additionally, we flatten the loss landscape during the model training to improve the detector's generalization capabilities. The effectiveness of our method, which outperforms traditional detection techniques, is demonstrated through extensive experiments, underscoring its potential to set a new state-of-the-art approach in DM-generated image detection. The code is available at https://github.com/Purdue-M2/Robust_DM_Generated_Image_Detection.
Abstract:With the advent of the era of big data, massive information, expert experience, and high-accuracy models bring great opportunities to the information cascade prediction of public emergencies. However, the involvement of specialist knowledge from various disciplines has resulted in a primarily application-specific focus (e.g., earthquakes, floods, infectious diseases) for information cascade prediction of public emergencies. The lack of a unified prediction framework poses a challenge for classifying intersectional prediction methods across different application fields. This survey paper offers a systematic classification and summary of information cascade modeling, prediction, and application. We aim to help researchers identify cutting-edge research and comprehend models and methods of information cascade prediction under public emergencies. By summarizing open issues and outlining future directions in this field, this paper has the potential to be a valuable resource for researchers conducting further studies on predicting information cascades.