Abstract:We propose an aspect-guided, multi-level perturbation framework to evaluate the robustness of Large Language Models (LLMs) in automated peer review. Our framework explores perturbations in three key components of the peer review process-papers, reviews, and rebuttals-across several quality aspects, including contribution, soundness, presentation, tone, and completeness. By applying targeted perturbations and examining their effects on both LLM-as-Reviewer and LLM-as-Meta-Reviewer, we investigate how aspect-based manipulations, such as omitting methodological details from papers or altering reviewer conclusions, can introduce significant biases in the review process. We identify several potential vulnerabilities: review conclusions that recommend a strong reject may significantly influence meta-reviews, negative or misleading reviews may be wrongly interpreted as thorough, and incomplete or hostile rebuttals can unexpectedly lead to higher acceptance rates. Statistical tests show that these biases persist under various Chain-of-Thought prompting strategies, highlighting the lack of robust critical evaluation in current LLMs. Our framework offers a practical methodology for diagnosing these vulnerabilities, thereby contributing to the development of more reliable and robust automated reviewing systems.
Abstract:In NLG meta-evaluation, evaluation metrics are typically assessed based on their consistency with humans. However, we identify some limitations in traditional NLG meta-evaluation approaches, such as issues in handling human ratings and ambiguous selections of correlation measures, which undermine the effectiveness of meta-evaluation. In this work, we propose a dual-perspective NLG meta-evaluation framework that focuses on different evaluation capabilities, thereby providing better interpretability. In addition, we introduce a method of automatically constructing the corresponding benchmarks without requiring new human annotations. Furthermore, we conduct experiments with 16 representative LLMs as the evaluators based on our proposed framework, comprehensively analyzing their evaluation performance from different perspectives.
Abstract:Evaluating and ranking the capabilities of different LLMs is crucial for understanding their performance and alignment with human preferences. Due to the high cost and time-consuming nature of human evaluations, an automatic LLM bencher (i.e., an automatic evaluation framework that aims to rank LLMs based on their alignment with human preferences) is indispensable. An automatic LLM bencher consists of four components: the input set (e.g., a user instruction), the evaluation model (e.g., an LLM), the evaluation type (e.g., pairwise comparison), and the aggregation method (e.g., the ELO rating system). However, previous work has not thoroughly explored how to select these components or how their different combinations influence the results. In this work, through controlled experiments, we provide a series of recommendations on how to choose each component to better automate the evaluation of LLMs. Furthermore, we discovered that when evaluating LLMs with similar performance, the performance of the automatic LLM bencher declines sharply, underscoring the limitations of current benchers and calling for future work. Lastly, we found that the evaluation models' performance at the instance level (e.g., the accuracy of selecting the best output) does not always align with their effectiveness when used as a component of a bencher, highlighting the importance of dedicated system-level evaluation of benchers.
Abstract:The correlation between NLG automatic evaluation metrics and human evaluation is often regarded as a critical criterion for assessing the capability of an evaluation metric. However, different grouping methods and correlation coefficients result in various types of correlation measures used in meta-evaluation. In specific evaluation scenarios, prior work often directly follows conventional measure settings, but the characteristics and differences between these measures have not gotten sufficient attention. Therefore, this paper analyzes 12 common correlation measures using a large amount of real-world data from six widely-used NLG evaluation datasets and 32 evaluation metrics, revealing that different measures indeed impact the meta-evaluation results. Furthermore, we propose three perspectives that reflect the capability of meta-evaluation and find that the measure using global grouping and Pearson correlation exhibits the best overall performance, involving the discriminative power, ranking consistency, and sensitivity to score granularity.
Abstract:The evaluation of natural language generation (NLG) tasks is a significant and longstanding research issue. With the recent emergence of powerful large language models (LLMs), some studies have turned to LLM-based automatic evaluation methods, which demonstrate great potential to become a new evaluation paradigm following traditional string-based and model-based metrics. However, despite the improved performance of existing methods, they still possess some deficiencies, such as dependency on references and limited evaluation flexibility. Therefore, in this paper, we meticulously construct a large-scale NLG evaluation corpus NLG-Eval with human and GPT-4 annotations to alleviate the lack of relevant data in this field. Furthermore, we propose Themis, an LLM dedicated to NLG evaluation, which has been trained with our designed multi-perspective consistency and rating-oriented preference alignment methods. Themis can conduct flexible and interpretable evaluations without references, and it exhibits superior evaluation performance on various NLG tasks, simultaneously generalizing well to unseen tasks and surpassing other evaluation models, including GPT-4.
Abstract:Pixel-level Video Understanding in the Wild Challenge (PVUW) focus on complex video understanding. In this CVPR 2024 workshop, we add two new tracks, Complex Video Object Segmentation Track based on MOSE dataset and Motion Expression guided Video Segmentation track based on MeViS dataset. In the two new tracks, we provide additional videos and annotations that feature challenging elements, such as the disappearance and reappearance of objects, inconspicuous small objects, heavy occlusions, and crowded environments in MOSE. Moreover, we provide a new motion expression guided video segmentation dataset MeViS to study the natural language-guided video understanding in complex environments. These new videos, sentences, and annotations enable us to foster the development of a more comprehensive and robust pixel-level understanding of video scenes in complex environments and realistic scenarios. The MOSE challenge had 140 registered teams in total, 65 teams participated the validation phase and 12 teams made valid submissions in the final challenge phase. The MeViS challenge had 225 registered teams in total, 50 teams participated the validation phase and 5 teams made valid submissions in the final challenge phase.
Abstract:Human evaluation is viewed as a reliable evaluation method for NLG which is expensive and time-consuming. To save labor and costs, researchers usually perform human evaluation on a small subset of data sampled from the whole dataset in practice. However, different selection subsets will lead to different rankings of the systems. To give a more correct inter-system ranking and make the gold standard human evaluation more reliable, we propose a Constrained Active Sampling Framework (CASF) for reliable human judgment. CASF operates through a Learner, a Systematic Sampler and a Constrained Controller to select representative samples for getting a more correct inter-system ranking.Experiment results on 137 real NLG evaluation setups with 44 human evaluation metrics across 16 datasets and 5 NLG tasks demonstrate CASF receives 93.18% top-ranked system recognition accuracy and ranks first or ranks second on 90.91% of the human metrics with 0.83 overall inter-system ranking Kendall correlation.Code and data are publicly available online.
Abstract:Motion Expression guided Video Segmentation (MeViS), as an emerging task, poses many new challenges to the field of referring video object segmentation (RVOS). In this technical report, we investigated and validated the effectiveness of static-dominant data and frame sampling on this challenging setting. Our solution achieves a J&F score of 0.5447 in the competition phase and ranks 1st in the MeViS track of the PVUW Challenge. The code is available at: https://github.com/Tapall-AI/MeViS_Track_Solution_2024.
Abstract:Controllable video editing has demonstrated remarkable potential across diverse applications, particularly in scenarios where capturing or re-capturing real-world videos is either impractical or costly. This paper introduces a novel and efficient system named Place-Anything, which facilitates the insertion of any object into any video solely based on a picture or text description of the target object or element. The system comprises three modules: 3D generation, video reconstruction, and 3D target insertion. This integrated approach offers an efficient and effective solution for producing and editing high-quality videos by seamlessly inserting realistic objects. Through a user study, we demonstrate that our system can effortlessly place any object into any video using just a photograph of the object. Our demo video can be found at https://youtu.be/afXqgLLRnTE. Please also visit our project page https://place-anything.github.io to get access.
Abstract:Some prior work has shown that LLMs perform well in NLG evaluation for different tasks. However, we discover that LLMs seem to confuse different evaluation criteria, which reduces their reliability. For further verification, we first consider avoiding issues of inconsistent conceptualization and vague expression in existing NLG quality criteria themselves. So we summarize a clear hierarchical classification system for 11 common aspects with corresponding different criteria from previous studies involved. Inspired by behavioral testing, we elaborately design 18 types of aspect-targeted perturbation attacks for fine-grained analysis of the evaluation behaviors of different LLMs. We also conduct human annotations beyond the guidance of the classification system to validate the impact of the perturbations. Our experimental results reveal confusion issues inherent in LLMs, as well as other noteworthy phenomena, and necessitate further research and improvements for LLM-based evaluation.