Abstract:The correlation between NLG automatic evaluation metrics and human evaluation is often regarded as a critical criterion for assessing the capability of an evaluation metric. However, different grouping methods and correlation coefficients result in various types of correlation measures used in meta-evaluation. In specific evaluation scenarios, prior work often directly follows conventional measure settings, but the characteristics and differences between these measures have not gotten sufficient attention. Therefore, this paper analyzes 12 common correlation measures using a large amount of real-world data from six widely-used NLG evaluation datasets and 32 evaluation metrics, revealing that different measures indeed impact the meta-evaluation results. Furthermore, we propose three perspectives that reflect the capability of meta-evaluation and find that the measure using global grouping and Pearson correlation exhibits the best overall performance, involving the discriminative power, ranking consistency, and sensitivity to score granularity.
Abstract:The evaluation of natural language generation (NLG) tasks is a significant and longstanding research issue. With the recent emergence of powerful large language models (LLMs), some studies have turned to LLM-based automatic evaluation methods, which demonstrate great potential to become a new evaluation paradigm following traditional string-based and model-based metrics. However, despite the improved performance of existing methods, they still possess some deficiencies, such as dependency on references and limited evaluation flexibility. Therefore, in this paper, we meticulously construct a large-scale NLG evaluation corpus NLG-Eval with human and GPT-4 annotations to alleviate the lack of relevant data in this field. Furthermore, we propose Themis, an LLM dedicated to NLG evaluation, which has been trained with our designed multi-perspective consistency and rating-oriented preference alignment methods. Themis can conduct flexible and interpretable evaluations without references, and it exhibits superior evaluation performance on various NLG tasks, simultaneously generalizing well to unseen tasks and surpassing other evaluation models, including GPT-4.
Abstract:Pixel-level Video Understanding in the Wild Challenge (PVUW) focus on complex video understanding. In this CVPR 2024 workshop, we add two new tracks, Complex Video Object Segmentation Track based on MOSE dataset and Motion Expression guided Video Segmentation track based on MeViS dataset. In the two new tracks, we provide additional videos and annotations that feature challenging elements, such as the disappearance and reappearance of objects, inconspicuous small objects, heavy occlusions, and crowded environments in MOSE. Moreover, we provide a new motion expression guided video segmentation dataset MeViS to study the natural language-guided video understanding in complex environments. These new videos, sentences, and annotations enable us to foster the development of a more comprehensive and robust pixel-level understanding of video scenes in complex environments and realistic scenarios. The MOSE challenge had 140 registered teams in total, 65 teams participated the validation phase and 12 teams made valid submissions in the final challenge phase. The MeViS challenge had 225 registered teams in total, 50 teams participated the validation phase and 5 teams made valid submissions in the final challenge phase.
Abstract:Human evaluation is viewed as a reliable evaluation method for NLG which is expensive and time-consuming. To save labor and costs, researchers usually perform human evaluation on a small subset of data sampled from the whole dataset in practice. However, different selection subsets will lead to different rankings of the systems. To give a more correct inter-system ranking and make the gold standard human evaluation more reliable, we propose a Constrained Active Sampling Framework (CASF) for reliable human judgment. CASF operates through a Learner, a Systematic Sampler and a Constrained Controller to select representative samples for getting a more correct inter-system ranking.Experiment results on 137 real NLG evaluation setups with 44 human evaluation metrics across 16 datasets and 5 NLG tasks demonstrate CASF receives 93.18% top-ranked system recognition accuracy and ranks first or ranks second on 90.91% of the human metrics with 0.83 overall inter-system ranking Kendall correlation.Code and data are publicly available online.
Abstract:Motion Expression guided Video Segmentation (MeViS), as an emerging task, poses many new challenges to the field of referring video object segmentation (RVOS). In this technical report, we investigated and validated the effectiveness of static-dominant data and frame sampling on this challenging setting. Our solution achieves a J&F score of 0.5447 in the competition phase and ranks 1st in the MeViS track of the PVUW Challenge. The code is available at: https://github.com/Tapall-AI/MeViS_Track_Solution_2024.
Abstract:Controllable video editing has demonstrated remarkable potential across diverse applications, particularly in scenarios where capturing or re-capturing real-world videos is either impractical or costly. This paper introduces a novel and efficient system named Place-Anything, which facilitates the insertion of any object into any video solely based on a picture or text description of the target object or element. The system comprises three modules: 3D generation, video reconstruction, and 3D target insertion. This integrated approach offers an efficient and effective solution for producing and editing high-quality videos by seamlessly inserting realistic objects. Through a user study, we demonstrate that our system can effortlessly place any object into any video using just a photograph of the object. Our demo video can be found at https://youtu.be/afXqgLLRnTE. Please also visit our project page https://place-anything.github.io to get access.
Abstract:Some prior work has shown that LLMs perform well in NLG evaluation for different tasks. However, we discover that LLMs seem to confuse different evaluation criteria, which reduces their reliability. For further verification, we first consider avoiding issues of inconsistent conceptualization and vague expression in existing NLG quality criteria themselves. So we summarize a clear hierarchical classification system for 11 common aspects with corresponding different criteria from previous studies involved. Inspired by behavioral testing, we elaborately design 18 types of aspect-targeted perturbation attacks for fine-grained analysis of the evaluation behaviors of different LLMs. We also conduct human annotations beyond the guidance of the classification system to validate the impact of the perturbations. Our experimental results reveal confusion issues inherent in LLMs, as well as other noteworthy phenomena, and necessitate further research and improvements for LLM-based evaluation.
Abstract:Evaluating natural language generation (NLG) is a vital but challenging problem in artificial intelligence. Traditional evaluation metrics mainly capturing content (e.g. n-gram) overlap between system outputs and references are far from satisfactory, and large language models (LLMs) such as ChatGPT have demonstrated great potential in NLG evaluation in recent years. Various automatic evaluation methods based on LLMs have been proposed, including metrics derived from LLMs, prompting LLMs, and fine-tuning LLMs with labeled evaluation data. In this survey, we first give a taxonomy of LLM-based NLG evaluation methods, and discuss their pros and cons, respectively. We also discuss human-LLM collaboration for NLG evaluation. Lastly, we discuss several open problems in this area and point out future research directions.
Abstract:How well can large language models (LLMs) generate summaries? We develop new datasets and conduct human evaluation experiments to evaluate the zero-shot generation capability of LLMs across five distinct summarization tasks. Our findings indicate a clear preference among human evaluators for LLM-generated summaries over human-written summaries and summaries generated by fine-tuned models. Specifically, LLM-generated summaries exhibit better factual consistency and fewer instances of extrinsic hallucinations. Due to the satisfactory performance of LLMs in summarization tasks (even surpassing the benchmark of reference summaries), we believe that most conventional works in the field of text summarization are no longer necessary in the era of LLMs. However, we recognize that there are still some directions worth exploring, such as the creation of novel datasets with higher quality and more reliable evaluation methods.
Abstract:Referring video object segmentation (RVOS), as a supervised learning task, relies on sufficient annotated data for a given scene. However, in more realistic scenarios, only minimal annotations are available for a new scene, which poses significant challenges to existing RVOS methods. With this in mind, we propose a simple yet effective model with a newly designed cross-modal affinity (CMA) module based on a Transformer architecture. The CMA module builds multimodal affinity with a few samples, thus quickly learning new semantic information, and enabling the model to adapt to different scenarios. Since the proposed method targets limited samples for new scenes, we generalize the problem as - few-shot referring video object segmentation (FS-RVOS). To foster research in this direction, we build up a new FS-RVOS benchmark based on currently available datasets. The benchmark covers a wide range and includes multiple situations, which can maximally simulate real-world scenarios. Extensive experiments show that our model adapts well to different scenarios with only a few samples, reaching state-of-the-art performance on the benchmark. On Mini-Ref-YouTube-VOS, our model achieves an average performance of 53.1 J and 54.8 F, which are 10% better than the baselines. Furthermore, we show impressive results of 77.7 J and 74.8 F on Mini-Ref-SAIL-VOS, which are significantly better than the baselines. Code is publicly available at https://github.com/hengliusky/Few_shot_RVOS.