Cheems
Abstract:Scene flow estimation aims to generate the 3D motion field of points between two consecutive frames of point clouds, which has wide applications in various fields. Existing point-based methods ignore the irregularity of point clouds and have difficulty capturing long-range dependencies due to the inefficiency of point-level computation. Voxel-based methods suffer from the loss of detail information. In this paper, we propose a point-voxel fusion method, where we utilize a voxel branch based on sparse grid attention and the shifted window strategy to capture long-range dependencies and a point branch to capture fine-grained features to compensate for the information loss in the voxel branch. In addition, since xyz coordinates are difficult to describe the geometric structure of complex 3D objects in the scene, we explicitly encode the local surface information of the point cloud through the umbrella surface feature extraction (USFE) module. We verify the effectiveness of our method by conducting experiments on the Flyingthings3D and KITTI datasets. Our method outperforms all other self-supervised methods and achieves highly competitive results compared to fully supervised methods. We achieve improvements in all metrics, especially EPE, which is reduced by 8.51% and 10.52% on the KITTIo and KITTIs datasets, respectively.
Abstract:Semantic segmentation of remote sensing images is a fundamental task in geospatial research. However, widely used Convolutional Neural Networks (CNNs) and Transformers have notable drawbacks: CNNs may be limited by insufficient remote sensing modeling capability, while Transformers face challenges due to computational complexity. In this paper, we propose a remote-sensing image semantic segmentation network named LKASeg, which combines Large Kernel Attention(LSKA) and Full-Scale Skip Connections(FSC). Specifically, we propose a decoder based on Large Kernel Attention (LKA), which extract global features while avoiding the computational overhead of self-attention and providing channel adaptability. To achieve full-scale feature learning and fusion, we apply Full-Scale Skip Connections (FSC) between the encoder and decoder. We conducted experiments by combining the LKA-based decoder with FSC. On the ISPRS Vaihingen dataset, the mF1 and mIoU scores achieved 90.33% and 82.77%.
Abstract:With the rapid development of intelligent transportation systems and the popularity of smart city infrastructure, Vehicle Re-ID technology has become an important research field. The vehicle Re-ID task faces an important challenge, which is the high similarity between different vehicles. Existing methods use additional detection or segmentation models to extract differentiated local features. However, these methods either rely on additional annotations or greatly increase the computational cost. Using attention mechanism to capture global and local features is crucial to solve the challenge of high similarity between classes in vehicle Re-ID tasks. In this paper, we propose LKA-ReID with large kernel attention. Specifically, the large kernel attention (LKA) utilizes the advantages of self-attention and also benefits from the advantages of convolution, which can extract the global and local features of the vehicle more comprehensively. We also introduce hybrid channel attention (HCA) combines channel attention with spatial information, so that the model can better focus on channels and feature regions, and ignore background and other disturbing information. Experiments on VeRi-776 dataset demonstrated the effectiveness of LKA-ReID, with mAP reaches 86.65% and Rank-1 reaches 98.03%.
Abstract:Intraoperative CT imaging serves as a crucial resource for surgical guidance; however, it may not always be readily accessible or practical to implement. In scenarios where CT imaging is not an option, reconstructing CT scans from X-rays can offer a viable alternative. In this paper, we introduce an innovative method for 3D CT reconstruction utilizing biplanar X-rays. Distinct from previous research that relies on conventional image generation techniques, our approach leverages a conditional diffusion process to tackle the task of reconstruction. More precisely, we employ a diffusion-based probabilistic model trained to produce 3D CT images based on orthogonal biplanar X-rays. To improve the structural integrity of the reconstructed images, we incorporate a novel projection loss function. Experimental results validate that our proposed method surpasses existing state-of-the-art benchmarks in both visual image quality and multiple evaluative metrics. Specifically, our technique achieves a higher Structural Similarity Index (SSIM) of 0.83, a relative increase of 10\%, and a lower Fr\'echet Inception Distance (FID) of 83.43, which represents a relative decrease of 25\%.
Abstract:In light of the inherent entailment relations between images and text, hyperbolic point vector embeddings, leveraging the hierarchical modeling advantages of hyperbolic space, have been utilized for visual semantic representation learning. However, point vector embedding approaches fail to address the issue of semantic uncertainty, where an image may have multiple interpretations, and text may refer to different images, a phenomenon particularly prevalent in the medical domain. Therefor, we propose \textbf{HYDEN}, a novel hyperbolic density embedding based image-text representation learning approach tailored for specific medical domain data. This method integrates text-aware local features alongside global features from images, mapping image-text features to density features in hyperbolic space via using hyperbolic pseudo-Gaussian distributions. An encapsulation loss function is employed to model the partial order relations between image-text density distributions. Experimental results demonstrate the interpretability of our approach and its superior performance compared to the baseline methods across various zero-shot tasks and different datasets.
Abstract:For surgical planning and intra-operation imaging, CT reconstruction using X-ray images can potentially be an important alternative when CT imaging is not available or not feasible. In this paper, we aim to use biplanar X-rays to reconstruct a 3D CT image, because biplanar X-rays convey richer information than single-view X-rays and are more commonly used by surgeons. Different from previous studies in which the two X-ray views were treated indifferently when fusing the cross-view data, we propose a novel attention-informed coarse-to-fine cross-view fusion method to combine the features extracted from the orthogonal biplanar views. This method consists of a view attention alignment sub-module and a fine-distillation sub-module that are designed to work together to highlight the unique or complementary information from each of the views. Experiments have demonstrated the superiority of our proposed method over the SOTA methods.
Abstract:Computed tomography (CT) is widely utilized in clinical settings because it delivers detailed 3D images of the human body. However, performing CT scans is not always feasible due to radiation exposure and limitations in certain surgical environments. As an alternative, reconstructing CT images from ultra-sparse X-rays offers a valuable solution and has gained significant interest in scientific research and medical applications. However, it presents great challenges as it is inherently an ill-posed problem, often compromised by artifacts resulting from overlapping structures in X-ray images. In this paper, we propose DiffuX2CT, which models CT reconstruction from orthogonal biplanar X-rays as a conditional diffusion process. DiffuX2CT is established with a 3D global coherence denoising model with a new, implicit conditioning mechanism. We realize the conditioning mechanism by a newly designed tri-plane decoupling generator and an implicit neural decoder. By doing so, DiffuX2CT achieves structure-controllable reconstruction, which enables 3D structural information to be recovered from 2D X-rays, therefore producing faithful textures in CT images. As an extra contribution, we collect a real-world lumbar CT dataset, called LumbarV, as a new benchmark to verify the clinical significance and performance of CT reconstruction from X-rays. Extensive experiments on this dataset and three more publicly available datasets demonstrate the effectiveness of our proposal.
Abstract:Fine-tuning pretrained large models to downstream tasks is an important problem, which however suffers from huge memory overhead due to large-scale parameters. This work strives to reduce memory overhead in fine-tuning from perspectives of activation function and layer normalization. To this end, we propose the Approximate Backpropagation (Approx-BP) theory, which provides the theoretical feasibility of decoupling the forward and backward passes. We apply our Approx-BP theory to backpropagation training and derive memory-efficient alternatives of GELU and SiLU activation functions, which use derivative functions of ReLUs in the backward pass while keeping their forward pass unchanged. In addition, we introduce a Memory-Sharing Backpropagation strategy, which enables the activation memory to be shared by two adjacent layers, thereby removing activation memory usage redundancy. Our method neither induces extra computation nor reduces training efficiency. We conduct extensive experiments with pretrained vision and language models, and the results demonstrate that our proposal can reduce up to $\sim$$30\%$ of the peak memory usage. Our code is released at https://github.com/yyyyychen/LowMemoryBP.
Abstract:This paper focuses on the data-insufficiency problem in multi-task learning within an episodic training setup. Specifically, we explore the potential of heterogeneous information across tasks and meta-knowledge among episodes to effectively tackle each task with limited data. Existing meta-learning methods often fail to take advantage of crucial heterogeneous information in a single episode, while multi-task learning models neglect reusing experience from earlier episodes. To address the problem of insufficient data, we develop Heterogeneous Neural Processes (HNPs) for the episodic multi-task setup. Within the framework of hierarchical Bayes, HNPs effectively capitalize on prior experiences as meta-knowledge and capture task-relatedness among heterogeneous tasks, mitigating data-insufficiency. Meanwhile, transformer-structured inference modules are designed to enable efficient inferences toward meta-knowledge and task-relatedness. In this way, HNPs can learn more powerful functional priors for adapting to novel heterogeneous tasks in each meta-test episode. Experimental results show the superior performance of the proposed HNPs over typical baselines, and ablation studies verify the effectiveness of the designed inference modules.
Abstract:Deep learning models fail on cross-domain challenges if the model is oversensitive to domain-specific attributes, e.g., lightning, background, camera angle, etc. To alleviate this problem, data augmentation coupled with consistency regularization are commonly adopted to make the model less sensitive to domain-specific attributes. Consistency regularization enforces the model to output the same representation or prediction for two views of one image. These constraints, however, are either too strict or not order-preserving for the classification probabilities. In this work, we propose the Order-preserving Consistency Regularization (OCR) for cross-domain tasks. The order-preserving property for the prediction makes the model robust to task-irrelevant transformations. As a result, the model becomes less sensitive to the domain-specific attributes. The comprehensive experiments show that our method achieves clear advantages on five different cross-domain tasks.