Abstract:Recent advancements in Mamba have shown promising results in image restoration. These methods typically flatten 2D images into multiple distinct 1D sequences along rows and columns, process each sequence independently using selective scan operation, and recombine them to form the outputs. However, such a paradigm overlooks two vital aspects: i) the local relationships and spatial continuity inherent in natural images, and ii) the discrepancies among sequences unfolded through totally different ways. To overcome the drawbacks, we explore two problems in Mamba-based restoration methods: i) how to design a scanning strategy preserving both locality and continuity while facilitating restoration, and ii) how to aggregate the distinct sequences unfolded in totally different ways. To address these problems, we propose a novel Mamba-based Image Restoration model (MaIR), which consists of Nested S-shaped Scanning strategy (NSS) and Sequence Shuffle Attention block (SSA). Specifically, NSS preserves locality and continuity of the input images through the stripe-based scanning region and the S-shaped scanning path, respectively. SSA aggregates sequences through calculating attention weights within the corresponding channels of different sequences. Thanks to NSS and SSA, MaIR surpasses 40 baselines across 14 challenging datasets, achieving state-of-the-art performance on the tasks of image super-resolution, denoising, deblurring and dehazing. Our codes will be available after acceptance.
Abstract:Fine-grained clustering is a practical yet challenging task, whose essence lies in capturing the subtle differences between instances of different classes. Such subtle differences can be easily disrupted by data augmentation or be overwhelmed by redundant information in data, leading to significant performance degradation for existing clustering methods. In this work, we introduce DiFiC a fine-grained clustering method building upon the conditional diffusion model. Distinct from existing works that focus on extracting discriminative features from images, DiFiC resorts to deducing the textual conditions used for image generation. To distill more precise and clustering-favorable object semantics, DiFiC further regularizes the diffusion target and guides the distillation process utilizing neighborhood similarity. Extensive experiments demonstrate that DiFiC outperforms both state-of-the-art discriminative and generative clustering methods on four fine-grained image clustering benchmarks. We hope the success of DiFiC will inspire future research to unlock the potential of diffusion models in tasks beyond generation. The code will be released.
Abstract:Despite the significant advancements in Text-to-SQL (Text2SQL) facilitated by large language models (LLMs), the latest state-of-the-art techniques are still trapped in the in-context learning of closed-source LLMs (e.g., GPT-4), which limits their applicability in open scenarios. To address this challenge, we propose a novel RObust mUltitask Tuning and collaboration mEthod (ROUTE) to improve the comprehensive capabilities of open-source LLMs for Text2SQL, thereby providing a more practical solution. Our approach begins with multi-task supervised fine-tuning (SFT) using various synthetic training data related to SQL generation. Unlike existing SFT-based Text2SQL methods, we introduced several additional SFT tasks, including schema linking, noise correction, and continuation writing. Engaging in a variety of SQL generation tasks enhances the model's understanding of SQL syntax and improves its ability to generate high-quality SQL queries. Additionally, inspired by the collaborative modes of LLM agents, we introduce a Multitask Collaboration Prompting (MCP) strategy. This strategy leverages collaboration across several SQL-related tasks to reduce hallucinations during SQL generation, thereby maximizing the potential of enhancing Text2SQL performance through explicit multitask capabilities. Extensive experiments and in-depth analyses have been performed on eight open-source LLMs and five widely-used benchmarks. The results demonstrate that our proposal outperforms the latest Text2SQL methods and yields leading performance.
Abstract:The rapid increase of space assets represented by small satellites in low Earth orbit can enable ubiquitous digital services for everyone. However, due to the dynamic space environment, numerous space objects, complex atmospheric conditions, and unexpected events can easily introduce adverse conditions affecting space safety, operations, and sustainability of the outer space environment. This challenge calls for responsive, effective satellite object detection (SOD) solutions that allow a small satellite to assess and respond to collision risks, with the consideration of constrained resources on a small satellite platform. This paper discusses the SOD tasks and onboard deep learning (DL) approach to the tasks. Two new DL models are proposed, called GELAN-ViT and GELAN-RepViT, which incorporate vision transformer (ViT) into the Generalized Efficient Layer Aggregation Network (GELAN) architecture and address limitations by separating the convolutional neural network and ViT paths. These models outperform the state-of-the-art YOLOv9-t in terms of mean average precision (mAP) and computational costs. On the SOD dataset, our proposed models can achieve around 95% mAP50 with giga-floating point operations (GFLOPs) reduced by over 5.0. On the VOC 2012 dataset, they can achieve $\geq$ 60.7% mAP50 with GFLOPs reduced by over 5.2.
Abstract:The success of most existing cross-modal retrieval methods heavily relies on the assumption that the given queries follow the same distribution of the source domain. However, such an assumption is easily violated in real-world scenarios due to the complexity and diversity of queries, thus leading to the query shift problem. Specifically, query shift refers to the online query stream originating from the domain that follows a different distribution with the source one. In this paper, we observe that query shift would not only diminish the uniformity (namely, within-modality scatter) of the query modality but also amplify the gap between query and gallery modalities. Based on the observations, we propose a novel method dubbed Test-time adaptation for Cross-modal Retrieval (TCR). In brief, TCR employs a novel module to refine the query predictions (namely, retrieval results of the query) and a joint objective to prevent query shift from disturbing the common space, thus achieving online adaptation for the cross-modal retrieval models with query shift. Expensive experiments demonstrate the effectiveness of the proposed TCR against query shift. The code will be released upon acceptance.
Abstract:Large Language Models have demonstrated impressive reasoning capabilities across multiple languages. However, the relationship between capabilities in different languages is less explored. In this work, we decompose the process of reasoning tasks into two separated parts: knowledge retrieval and knowledge-free reasoning, and analyze the cross-lingual transferability of them. With adapted and constructed knowledge-free reasoning datasets, we show that the knowledge-free reasoning capability can be nearly perfectly transferred across various source-target language directions despite the secondary impact of resource in some specific target languages, while cross-lingual knowledge retrieval significantly hinders the transfer. Moreover, by analyzing the hidden states and feed-forward network neuron activation during the reasoning tasks, we show that higher similarity of hidden representations and larger overlap of activated neurons could explain the better cross-lingual transferability of knowledge-free reasoning than knowledge retrieval. Thus, we hypothesize that knowledge-free reasoning embeds in some language-shared mechanism, while knowledge is stored separately in different languages.
Abstract:Large Language Models (LLMs) have demonstrated strong capabilities as knowledge bases and significant in-context reasoning capabilities. However, previous work challenges their out-of-context reasoning ability, i.e., the ability to infer information from their training data, instead of from the context or prompt. This paper focuses on a significant facet of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge. We designed a synthetic dataset with seven representative OCKR tasks to systematically assess the OCKR capabilities of LLMs. Using this dataset, we evaluated the LLaMA2-13B-chat model and discovered that its proficiency in this aspect is limited, regardless of whether the knowledge is trained in a separate or adjacent training settings. Moreover, training the model to reason with complete reasoning data did not result in significant improvement. Training the model to perform explicit knowledge retrieval helps in only one of the tasks, indicating that the model's limited OCKR capabilities are due to difficulties in retrieving relevant knowledge. Furthermore, we treat cross-lingual knowledge transfer as a distinct form of OCKR, and evaluate this ability. Our results show that the evaluated model also exhibits limited ability in transferring knowledge across languages. The dataset used in this study is available at https://github.com/NJUNLP/ID-OCKR.
Abstract:Despite their strong ability to retrieve knowledge in English, current large language models show imbalance abilities in different languages. Two approaches are proposed to address this, i.e., multilingual pretraining and multilingual instruction tuning. However, whether and how do such methods contribute to the cross-lingual knowledge alignment inside the models is unknown. In this paper, we propose CLiKA, a systematic framework to assess the cross-lingual knowledge alignment of LLMs in the Performance, Consistency and Conductivity levels, and explored the effect of multilingual pretraining and instruction tuning on the degree of alignment. Results show that: while both multilingual pretraining and instruction tuning are beneficial for cross-lingual knowledge alignment, the training strategy needs to be carefully designed. Namely, continued pretraining improves the alignment of the target language at the cost of other languages, while mixed pretraining affect other languages less. Also, the overall cross-lingual knowledge alignment, especially in the conductivity level, is unsatisfactory for all tested LLMs, and neither multilingual pretraining nor instruction tuning can substantially improve the cross-lingual knowledge conductivity.
Abstract:In this paper, we present and study a new instance-level retrieval task: PointCloud-Text Matching~(PTM), which aims to find the exact cross-modal instance that matches a given point-cloud query or text query. PTM could be applied to various scenarios, such as indoor/urban-canyon localization and scene retrieval. However, there exists no suitable and targeted dataset for PTM in practice. Therefore, we construct three new PTM benchmark datasets, namely 3D2T-SR, 3D2T-NR, and 3D2T-QA. We observe that the data is challenging and with noisy correspondence due to the sparsity, noise, or disorder of point clouds and the ambiguity, vagueness, or incompleteness of texts, which make existing cross-modal matching methods ineffective for PTM. To tackle these challenges, we propose a PTM baseline, named Robust PointCloud-Text Matching method (RoMa). RoMa consists of two modules: a Dual Attention Perception module (DAP) and a Robust Negative Contrastive Learning module (RNCL). Specifically, DAP leverages token-level and feature-level attention to adaptively focus on useful local and global features, and aggregate them into common representations, thereby reducing the adverse impact of noise and ambiguity. To handle noisy correspondence, RNCL divides negative pairs, which are much less error-prone than positive pairs, into clean and noisy subsets, and assigns them forward and reverse optimization directions respectively, thus enhancing robustness against noisy correspondence. We conduct extensive experiments on our benchmarks and demonstrate the superiority of our RoMa.
Abstract:In free-space optical satellite networks (FSOSNs), satellites connected via laser inter-satellite links (LISLs), latency is a critical factor, especially for long-distance inter-continental connections. Since satellites depend on solar panels for power supply, power consumption is also a vital factor. We investigate the minimization of total network latency (i.e., the sum of the network latencies of all inter-continental connections in a time slot) in a realistic model of a FSOSN, the latest version of the Starlink Phase 1 Version 3 constellation. We develop mathematical formulations of the total network latency over different LISL ranges and different satellite transmission power constraints for multiple simultaneous inter-continental connections. We use practical system models for calculating network latency and satellite optical link transmission power, and we formulate the problem as a binary integer linear program. The results reveal that, for satellite transmission power limits set at 0.5 W, 0.3 W, and 0.1 W, the average total network latency for all five inter-continental connections studied in this work levels off at 339 ms, 361 ms, and 542 ms, respectively. Furthermore, the corresponding LISL ranges required to achieve these average total network latency values are 4500 km, 3000 km, and 1731 km, respectively. Different limitations on satellite transmission power exhibit varying effects on average total network latency (over 100 time slots), and they also induce differing changes in the corresponding LISL ranges. In the absence of satellite transmission power constraints, as the LISL range extends from the minimum feasible range of 1575 km to the maximum feasible range of 5016 km, the average total network latency decreases from 589 ms to 311 ms.