Abstract:Ensuring safety is crucial to promote the application of robot manipulators in open workspace. Factors such as sensor errors or unpredictable collisions make the environment full of uncertainties. In this work, we investigate these potential safety challenges on redundant robot manipulators, and propose a task-oriented planning and control framework to achieve multi-layered safety while maintaining efficient task execution. Our approach consists of two main parts: a task-oriented trajectory planner based on multiple-shooting model predictive control method, and a torque controller that allows safe and efficient collision reaction using only proprioceptive data. Through extensive simulations and real-hardware experiments, we demonstrate that the proposed framework can effectively handle uncertain static or dynamic obstacles, and perform disturbance resistance in manipulation tasks when unforeseen contacts occur. All code will be open-sourced to benefit the community.
Abstract:Accurate detection and segmentation of brain tumors is critical for medical diagnosis. However, current supervised learning methods require extensively annotated images and the state-of-the-art generative models used in unsupervised methods often have limitations in covering the whole data distribution. In this paper, we propose a novel framework Two-Stage Generative Model (TSGM) that combines Cycle Generative Adversarial Network (CycleGAN) and Variance Exploding stochastic differential equation using joint probability (VE-JP) to improve brain tumor detection and segmentation. The CycleGAN is trained on unpaired data to generate abnormal images from healthy images as data prior. Then VE-JP is implemented to reconstruct healthy images using synthetic paired abnormal images as a guide, which alters only pathological regions but not regions of healthy. Notably, our method directly learned the joint probability distribution for conditional generation. The residual between input and reconstructed images suggests the abnormalities and a thresholding method is subsequently applied to obtain segmentation results. Furthermore, the multimodal results are weighted with different weights to improve the segmentation accuracy further. We validated our method on three datasets, and compared with other unsupervised methods for anomaly detection and segmentation. The DSC score of 0.8590 in BraTs2020 dataset, 0.6226 in ITCS dataset and 0.7403 in In-house dataset show that our method achieves better segmentation performance and has better generalization.
Abstract:In this paper, we study two challenging but less-touched problems in image restoration, namely, i) how to quantify the relationship between different image degradations and ii) how to improve the performance of a specific restoration task using the quantified relationship. To tackle the first challenge, Degradation Relationship Index (DRI) is proposed to measure the degradation relationship, which is defined as the drop rate difference in the validation loss between two models, i.e., one is trained using the anchor task only and another is trained using the anchor and the auxiliary tasks. Through quantifying the relationship between different degradations using DRI, we empirically observe that i) the degradation combination proportion is crucial to the image restoration performance. In other words, the combinations with only appropriate degradation proportions could improve the performance of the anchor restoration; ii) a positive DRI always predicts the performance improvement of image restoration. Based on the observations, we propose an adaptive Degradation Proportion Determination strategy (DPD) which could improve the performance of the anchor restoration task by using another restoration task as auxiliary. Extensive experimental results verify the effective of our method by taking image dehazing as the anchor task and denoising, desnowing, and deraining as the auxiliary tasks. The code will be released after acceptance.
Abstract:Mechatronic systems are commonly used in the industry, where fast and accurate motion performance is always required to guarantee manufacturing precision and efficiency. Nevertheless, the system model and parameters are difficult to be obtained accurately. Moreover, the high-order modes, strong coupling in the multi-axis systems, or unmodeled frictions will bring uncertain dynamics to the system. To overcome the above-mentioned issues and enhance the motion performance, this paper introduces a novel intelligent and totally model-free control method for mechatronic systems with unknown dynamics. In detail, a 2-degree-of-freedom (DOF) architecture is designed, which organically merges a generalized super-twisting algorithm with a unique iterative learning law. The controller solely utilizes the input-output data collected in iterations such that it works without any knowledge of the system parameters. The rigorous proof of convergence ability is given and a case study on flexture-joint dual-drive H-gantry stage is shown to validate the effectiveness of the proposed method.
Abstract:Online 1 on 1 class is created for more personalized learning experience. It demands a large number of teaching resources, which are scarce in China. To alleviate this problem, we build a platform (marketplace), i.e., \emph{Dahai} to allow college students from top Chinese universities to register as part-time instructors for the online 1 on 1 classes. To warn the unqualified instructors and ensure the overall education quality, we build a monitoring and alerting system by utilizing multimodal information from the online environment. Our system mainly consists of two key components: banned word detector and class quality predictor. The system performance is demonstrated both offline and online. By conducting experimental evaluation of real-world online courses, we are able to achieve 74.3\% alerting accuracy in our production environment.