Abstract:In the era of large language models (LLMs), building multilingual large language models (MLLMs) that can serve users worldwide holds great significance. However, existing research seldom focuses on the truthfulness of MLLMs. Meanwhile, contemporary multilingual aligning technologies struggle to balance massive languages and often exhibit serious truthfulness gaps across different languages, especially those that differ greatly from English. In our work, we construct a benchmark for truthfulness evaluation in multilingual scenarios and explore the ways to align facts across languages to enhance the truthfulness of MLLMs. Furthermore, we propose Fact-aware Multilingual Selective Synergy (FaMSS) to optimize the data allocation across a large number of languages and different data types. Experimental results demonstrate that our approach can effectively reduce the multilingual representation disparity and enhance the multilingual capabilities of LLMs.
Abstract:Multimodal pre-training for audio-and-text has recently been proved to be effective and has significantly improved the performance of many downstream speech understanding tasks. However, these state-of-the-art pre-training audio-text models work well only when provided with large amount of parallel audio-and-text data, which brings challenges on many languages that are rich in unimodal corpora but scarce of parallel cross-modal corpus. In this paper, we investigate whether it is possible to pre-train an audio-text multimodal model with extremely low-resource parallel data and extra non-parallel unimodal data. Our pre-training framework consists of the following components: (1) Intra-modal Denoising Auto-Encoding (IDAE), which is able to reconstruct input text (audio) representations from a noisy version of itself. (2) Cross-modal Denoising Auto-Encoding (CDAE), which is pre-trained to reconstruct the input text (audio), given both a noisy version of the input text (audio) and the corresponding translated noisy audio features (text embeddings). (3) Iterative Denoising Process (IDP), which iteratively translates raw audio (text) and the corresponding text embeddings (audio features) translated from previous iteration into the new less-noisy text embeddings (audio features). We adapt a dual cross-modal Transformer as our backbone model which consists of two unimodal encoders for IDAE and two cross-modal encoders for CDAE and IDP. Our method achieves comparable performance on multiple downstream speech understanding tasks compared with the model pre-trained on fully parallel data, demonstrating the great potential of the proposed method. Our code is available at: \url{https://github.com/KarlYuKang/Low-Resource-Multimodal-Pre-training}.
Abstract:Existing audio-language task-specific predictive approaches focus on building complicated late-fusion mechanisms. However, these models are facing challenges of overfitting with limited labels and low model generalization abilities. In this paper, we present a Cross-modal Transformer for Audio-and-Language, i.e., CTAL, which aims to learn the intra-modality and inter-modality connections between audio and language through two proxy tasks on a large amount of audio-and-language pairs: masked language modeling and masked cross-modal acoustic modeling. After fine-tuning our pre-trained model on multiple downstream audio-and-language tasks, we observe significant improvements across various tasks, such as, emotion classification, sentiment analysis, and speaker verification. On this basis, we further propose a specially-designed fusion mechanism that can be used in fine-tuning phase, which allows our pre-trained model to achieve better performance. Lastly, we demonstrate detailed ablation studies to prove that both our novel cross-modality fusion component and audio-language pre-training methods significantly contribute to the promising results.
Abstract:Learning effective language representations from crowdsourced labels is crucial for many real-world machine learning tasks. A challenging aspect of this problem is that the quality of crowdsourced labels suffer high intra- and inter-observer variability. Since the high-capacity deep neural networks can easily memorize all disagreements among crowdsourced labels, directly applying existing supervised language representation learning algorithms may yield suboptimal solutions. In this paper, we propose \emph{TACMA}, a \underline{t}emporal-\underline{a}ware language representation learning heuristic for \underline{c}rowdsourced labels with \underline{m}ultiple \underline{a}nnotators. The proposed approach (1) explicitly models the intra-observer variability with attention mechanism; (2) computes and aggregates per-sample confidence scores from multiple workers to address the inter-observer disagreements. The proposed heuristic is extremely easy to implement in around 5 lines of code. The proposed heuristic is evaluated on four synthetic and four real-world data sets. The results show that our approach outperforms a wide range of state-of-the-art baselines in terms of prediction accuracy and AUC. To encourage the reproducible results, we make our code publicly available at \url{https://github.com/CrowdsourcingMining/TACMA}.
Abstract:Task requirements (TRs) writing is an important question type in Key English Test and Preliminary English Test. A TR writing question may include multiple requirements and a high-quality essay must respond to each requirement thoroughly and accurately. However, the limited teacher resources prevent students from getting detailed grading instantly. The majority of existing automatic essay scoring systems focus on giving a holistic score but rarely provide reasons to support it. In this paper, we proposed an end-to-end framework based on machine reading comprehension (MRC) to address this problem to some extent. The framework not only detects whether an essay responds to a requirement question, but clearly marks where the essay answers the question. Our framework consists of three modules: question normalization module, ELECTRA based MRC module and response locating module. We extensively explore state-of-the-art MRC methods. Our approach achieves 0.93 accuracy score and 0.85 F1 score on a real-world educational dataset. To encourage reproducible results, we make our code publicly available at \url{https://github.com/aied2021TRMRC/AIED_2021_TRMRC_code}.
Abstract:The quality of vocal delivery is one of the key indicators for evaluating teacher enthusiasm, which has been widely accepted to be connected to the overall course qualities. However, existing evaluation for vocal delivery is mainly conducted with manual ratings, which faces two core challenges: subjectivity and time-consuming. In this paper, we present a novel machine learning approach that utilizes pairwise comparisons and a multimodal orthogonal fusing algorithm to generate large-scale objective evaluation results of the teacher vocal delivery in terms of fluency and passion. We collect two datasets from real-world education scenarios and the experiment results demonstrate the effectiveness of our algorithm. To encourage reproducible results, we make our code public available at \url{https://github.com/tal-ai/ML4VocalDelivery.git}.
Abstract:In this paper, we propose a simple yet effective solution to build practical teacher recommender systems for online one-on-one classes. Our system consists of (1) a pseudo matching score module that provides reliable training labels; (2) a ranking model that scores every candidate teacher; (3) a novelty boosting module that gives additional opportunities to new teachers; and (4) a diversity metric that guardrails the recommended results to reduce the chance of collision. Offline experimental results show that our approach outperforms a wide range of baselines. Furthermore, we show that our approach is able to reduce the number of student-teacher matching attempts from 7.22 to 3.09 in a five-month observation on a third-party online education platform.
Abstract:Sentence completion (SC) questions present a sentence with one or more blanks that need to be filled in, three to five possible words or phrases as options. SC questions are widely used for students learning English as a Second Language (ESL) and building computational approaches to automatically solve such questions is beneficial to language learners. In this work, we propose a neural framework to solve SC questions in English examinations by utilizing pre-trained language models. We conduct extensive experiments on a real-world K-12 ESL SC question dataset and the results demonstrate the superiority of our model in terms of prediction accuracy. Furthermore, we run precision-recall trade-off analysis to discuss the practical issues when deploying it in real-life scenarios. To encourage reproducible results, we make our code publicly available at \url{https://github.com/AIED2021/ESL-SentenceCompletion}.
Abstract:In this work, we study computational approaches to detect online dialogic instructions, which are widely used to help students understand learning materials, and build effective study habits. This task is rather challenging due to the widely-varying quality and pedagogical styles of dialogic instructions. To address these challenges, we utilize pre-trained language models, and propose a multi-task paradigm which enhances the ability to distinguish instances of different classes by enlarging the margin between categories via contrastive loss. Furthermore, we design a strategy to fully exploit the misclassified examples during the training stage. Extensive experiments on a real-world online educational data set demonstrate that our approach achieves superior performance compared to representative baselines. To encourage reproducible results, we make our implementation online available at \url{https://github.com/AIED2021/multitask-dialogic-instruction}.
Abstract:Many real-world applications involve the use of Optical Character Recognition (OCR) engines to transform handwritten images into transcripts on which downstream Natural Language Processing (NLP) models are applied. In this process, OCR engines may introduce errors and inputs to downstream NLP models become noisy. Despite that pre-trained models achieve state-of-the-art performance in many NLP benchmarks, we prove that they are not robust to noisy texts generated by real OCR engines. This greatly limits the application of NLP models in real-world scenarios. In order to improve model performance on noisy OCR transcripts, it is natural to train the NLP model on labelled noisy texts. However, in most cases there are only labelled clean texts. Since there is no handwritten pictures corresponding to the text, it is impossible to directly use the recognition model to obtain noisy labelled data. Human resources can be employed to copy texts and take pictures, but it is extremely expensive considering the size of data for model training. Consequently, we are interested in making NLP models intrinsically robust to OCR errors in a low resource manner. We propose a novel robust training framework which 1) employs simple but effective methods to directly simulate natural OCR noises from clean texts and 2) iteratively mines the hard examples from a large number of simulated samples for optimal performance. 3) To make our model learn noise-invariant representations, a stability loss is employed. Experiments on three real-world datasets show that the proposed framework boosts the robustness of pre-trained models by a large margin. We believe that this work can greatly promote the application of NLP models in actual scenarios, although the algorithm we use is simple and straightforward. We make our codes and three datasets publicly available\footnote{https://github.com/tal-ai/Robust-learning-MSSHEM}.