Abstract:Architecture performance evaluation is the most time-consuming part of neural architecture search (NAS). Zero-Shot NAS accelerates the evaluation by utilizing zero-cost proxies instead of training. Though effective, existing zero-cost proxies require invoking backpropagations or running networks on input data, making it difficult to further accelerate the computation of proxies. To alleviate this issue, architecture topologies are used to evaluate the performance of networks in this study. We prove that particular architectural topologies decrease the local entropy of feature maps, which degrades specific features to a bias, thereby reducing network performance. Based on this proof, architectural topologies are utilized to quantify the suppression of local entropy decrease (SED) as a data-free and running-free proxy. Experimental results show that SED outperforms most state-of-the-art proxies in terms of architecture selection on five benchmarks, with computation time reduced by three orders of magnitude. We further compare the SED-based NAS with state-of-the-art proxies. SED-based NAS selects the architecture with higher accuracy and fewer parameters in only one second. The theoretical analyses of local entropy and experimental results demonstrate that the suppression of local entropy decrease facilitates selecting optimal architectures in Zero-Shot NAS.
Abstract:In the era of large language models (LLMs), building multilingual large language models (MLLMs) that can serve users worldwide holds great significance. However, existing research seldom focuses on the truthfulness of MLLMs. Meanwhile, contemporary multilingual aligning technologies struggle to balance massive languages and often exhibit serious truthfulness gaps across different languages, especially those that differ greatly from English. In our work, we construct a benchmark for truthfulness evaluation in multilingual scenarios and explore the ways to align facts across languages to enhance the truthfulness of MLLMs. Furthermore, we propose Fact-aware Multilingual Selective Synergy (FaMSS) to optimize the data allocation across a large number of languages and different data types. Experimental results demonstrate that our approach can effectively reduce the multilingual representation disparity and enhance the multilingual capabilities of LLMs.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across various domains, motivating researchers to investigate their potential use in recommendation systems. However, directly applying LLMs to recommendation tasks has proven challenging due to the significant disparity between the data used for pre-training LLMs and the specific requirements of recommendation tasks. In this study, we introduce Direct Multi-Preference Optimization (DMPO), a streamlined framework designed to bridge the gap and enhance the alignment of LLMs for recommendation tasks. DMPO enhances the performance of LLM-based recommenders by simultaneously maximizing the probability of positive samples and minimizing the probability of multiple negative samples. We conducted experimental evaluations to compare DMPO against traditional recommendation methods and other LLM-based recommendation approaches. The results demonstrate that DMPO significantly improves the recommendation capabilities of LLMs across three real-world public datasets in few-shot scenarios. Additionally, the experiments indicate that DMPO exhibits superior generalization ability in cross-domain recommendations. A case study elucidates the reasons behind these consistent improvements and also underscores DMPO's potential as an explainable recommendation system.
Abstract:This paper presents an in-depth analysis of Large Language Models (LLMs), focusing on LLaMA, a prominent open-source foundational model in natural language processing. Instead of assessing LLaMA through its generative output, we design multiple-choice tasks to probe its intrinsic understanding in high-order tasks such as reasoning and computation. We examine the model horizontally, comparing different sizes, and vertically, assessing different layers. We unveil several key and uncommon findings based on the designed probing tasks: (1) Horizontally, enlarging model sizes almost could not automatically impart additional knowledge or computational prowess. Instead, it can enhance reasoning abilities, especially in math problem solving, and helps reduce hallucinations, but only beyond certain size thresholds; (2) In vertical analysis, the lower layers of LLaMA lack substantial arithmetic and factual knowledge, showcasing logical thinking, multilingual and recognitive abilities, with top layers housing most computational power and real-world knowledge.
Abstract:Existing research predominantly focuses on developing powerful language learning models (LLMs) for mathematical reasoning within monolingual languages, with few explorations in preserving efficacy in a multilingual context. To bridge this gap, this paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs. Firstly, by utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages, thus addressing the issue of training data scarcity in xMR tasks. Based on the collected dataset, we propose different training strategies to build powerful xMR LLMs, named MathOctopus, notably outperform conventional open-source LLMs and exhibit superiority over ChatGPT in few-shot scenarios. Notably, MathOctopus-13B reaches 47.6% accuracy which exceeds ChatGPT 46.3% on MGSM testset. Beyond remarkable results, we unearth several pivotal observations and insights from extensive experiments: (1) When extending the rejection sampling strategy to the multilingual context, it proves effective for model performances, albeit limited. (2) Employing parallel corpora for math Supervised Fine-Tuning (SFT) across multiple languages not only significantly enhances model performance multilingually but also elevates their monolingual performance. This indicates that crafting multilingual corpora can be regarded as a vital strategy for enhancing model performance in a specific language, especially in mathematical reasoning tasks. For instance, MathOctopus-7B improves its counterparts that trained on English from 42.2% to 50.8% on GSM8K testset.
Abstract:Online recommender systems (RS) aim to match user needs with the vast amount of resources available on various platforms. A key challenge is to model user preferences accurately under the condition of data sparsity. To address this challenge, some methods have leveraged external user behavior data from multiple platforms to enrich user representation. However, all of these methods require a consistent user ID across platforms and ignore the information from similar users. In this study, we propose RUEL, a novel retrieval-based sequential recommender that can effectively incorporate external anonymous user behavior data from Edge browser logs to enhance recommendation. We first collect and preprocess a large volume of Edge browser logs over a one-year period and link them to target entities that correspond to candidate items in recommendation datasets. We then design a contrastive learning framework with a momentum encoder and a memory bank to retrieve the most relevant and diverse browsing sequences from the full browsing log based on the semantic similarity between user representations. After retrieval, we apply an item-level attentive selector to filter out noisy items and generate refined sequence embeddings for the final predictor. RUEL is the first method that connects user browsing data with typical recommendation datasets and can be generalized to various recommendation scenarios and datasets. We conduct extensive experiments on four real datasets for sequential recommendation tasks and demonstrate that RUEL significantly outperforms state-of-the-art baselines. We also conduct ablation studies and qualitative analysis to validate the effectiveness of each component of RUEL and provide additional insights into our method.
Abstract:Due to the naturally power-law distributed nature of user-item interaction data in recommendation tasks, hyperbolic space modeling has recently been introduced into collaborative filtering methods. Among them, hyperbolic GCN combines the advantages of GCN and hyperbolic space and achieves a surprising performance. However, these methods only partially exploit the nature of hyperbolic space in their designs due to completely random embedding initialization and an inaccurate tangent space aggregation. In addition, the data used in these works mainly focus on user-item interaction data only, which further limits the performance of the models. In this paper, we propose a hyperbolic GCN collaborative filtering model, HGCC, which improves the existing hyperbolic GCN structure for collaborative filtering and incorporates side information. It keeps the long-tailed nature of the collaborative graph by adding power law prior to node embedding initialization; then, it aggregates neighbors directly in multiple hyperbolic spaces through the gyromidpoint method to obtain more accurate computation results; finally, the gate fusion with prior is used to fuse multiple embeddings of one node from different hyperbolic space automatically. Experimental results on four real datasets show that our model is highly competitive and outperforms leading baselines, including hyperbolic GCNs. Further experiments validate the efficacy of our proposed approach and give a further explanation by the learned embedding.
Abstract:Text summarization has a wide range of applications in many scenarios. The evaluation of the quality of the generated text is a complex problem. A big challenge to language evaluation is that there is a clear divergence between existing metrics and human evaluation. For example, the quality of a document summary can be measured by human annotators from both objective aspects, such as grammatical and semantic correctness, as well as subjective dimensions, such as comprehensiveness, succinctness, and interestingness. Most of the automatic evaluation methods like BLUE/ROUGE may be not able to capture the above dimensions well. In this paper, we propose a new evaluation framework based on LLMs, which provides a comprehensive evaluation framework by comparing generated text and reference text from both objective and subjective aspects. First, we propose to model objective and subjective dimensions of generated text based on roleplayers prompting mechanism. Furthermore, we introduce a context-based prompting mechanism that is able to generate dynamic roleplayer profiles based on input context. Finally, we design a multi-roleplayer prompting technology based on batch prompting to integrate multiple evaluation results into evaluation results. Experimental results on two real datasets for summarization show that our model is highly competitive and has a very high consistency with human annotators.
Abstract:In monolingual dense retrieval, lots of works focus on how to distill knowledge from cross-encoder re-ranker to dual-encoder retriever and these methods achieve better performance due to the effectiveness of cross-encoder re-ranker. However, we find that the performance of the cross-encoder re-ranker is heavily influenced by the number of training samples and the quality of negative samples, which is hard to obtain in the cross-lingual setting. In this paper, we propose to use a query generator as the teacher in the cross-lingual setting, which is less dependent on enough training samples and high-quality negative samples. In addition to traditional knowledge distillation, we further propose a novel enhancement method, which uses the query generator to help the dual-encoder align queries from different languages, but does not need any additional parallel sentences. The experimental results show that our method outperforms the state-of-the-art methods on two benchmark datasets.
Abstract:Recent multilingual pre-trained models have shown better performance in various multilingual tasks. However, these models perform poorly on multilingual retrieval tasks due to lacking multilingual training data. In this paper, we propose to mine and generate self-supervised training data based on a large-scale unlabeled corpus. We carefully design a mining method which combines the sparse and dense models to mine the relevance of unlabeled queries and passages. And we introduce a query generator to generate more queries in target languages for unlabeled passages. Through extensive experiments on Mr. TYDI dataset and an industrial dataset from a commercial search engine, we demonstrate that our method performs better than baselines based on various pre-trained multilingual models. Our method even achieves on-par performance with the supervised method on the latter dataset.