Abstract:The running-time analysis of evolutionary combinatorial optimization is a fundamental topic in evolutionary computation. Its current research mainly focuses on specific algorithms for simplified problems due to the challenge posed by fluctuating fitness values. This paper proposes a multiple-gain model to estimate the fitness trend of population during iterations. The proposed model is an improved version of the average gain model, which is the approach to estimate the running time of evolutionary algorithms for numerical optimization. The improvement yields novel results of evolutionary combinatorial optimization, including a briefer proof for the time complexity upper bound in the case of (1+1) EA for the Onemax problem, two tighter time complexity upper bounds than the known results in the case of (1+$\lambda$) EA for the knapsack problem with favorably correlated weights and a closed-form expression of time complexity upper bound in the case of (1+$\lambda$) EA for general $k$-MAX-SAT problems. The results indicate that the practical running time aligns with the theoretical results, verifying that the multiple-gain model is more general for running-time analysis of evolutionary combinatorial optimization than state-of-the-art methods.
Abstract:Recently, Gaussian Splatting has sparked a new trend in the field of computer vision. Apart from novel view synthesis, it has also been extended to the area of multi-view reconstruction. The latest methods facilitate complete, detailed surface reconstruction while ensuring fast training speed. However, these methods still require dense input views, and their output quality significantly degrades with sparse views. We observed that the Gaussian primitives tend to overfit the few training views, leading to noisy floaters and incomplete reconstruction surfaces. In this paper, we present an innovative sparse-view reconstruction framework that leverages intra-view depth and multi-view feature consistency to achieve remarkably accurate surface reconstruction. Specifically, we utilize monocular depth ranking information to supervise the consistency of depth distribution within patches and employ a smoothness loss to enhance the continuity of the distribution. To achieve finer surface reconstruction, we optimize the absolute position of depth through multi-view projection features. Extensive experiments on DTU and BlendedMVS demonstrate that our method outperforms state-of-the-art methods with a speedup of 60x to 200x, achieving swift and fine-grained mesh reconstruction without the need for costly pre-training.
Abstract:In recent years, reconstructing indoor scene geometry from multi-view images has achieved encouraging accomplishments. Current methods incorporate monocular priors into neural implicit surface models to achieve high-quality reconstructions. However, these methods require hundreds of images for scene reconstruction. When only a limited number of views are available as input, the performance of monocular priors deteriorates due to scale ambiguity, leading to the collapse of the reconstructed scene geometry. In this paper, we propose a new method, named Sparis, for indoor surface reconstruction from sparse views. Specifically, we investigate the impact of monocular priors on sparse scene reconstruction, introducing a novel prior based on inter-image matching information. Our prior offers more accurate depth information while ensuring cross-view matching consistency. Additionally, we employ an angular filter strategy and an epipolar matching weight function, aiming to reduce errors due to view matching inaccuracies, thereby refining the inter-image prior for improved reconstruction accuracy. The experiments conducted on widely used benchmarks demonstrate superior performance in sparse-view scene reconstruction.
Abstract:Architecture performance evaluation is the most time-consuming part of neural architecture search (NAS). Zero-Shot NAS accelerates the evaluation by utilizing zero-cost proxies instead of training. Though effective, existing zero-cost proxies require invoking backpropagations or running networks on input data, making it difficult to further accelerate the computation of proxies. To alleviate this issue, architecture topologies are used to evaluate the performance of networks in this study. We prove that particular architectural topologies decrease the local entropy of feature maps, which degrades specific features to a bias, thereby reducing network performance. Based on this proof, architectural topologies are utilized to quantify the suppression of local entropy decrease (SED) as a data-free and running-free proxy. Experimental results show that SED outperforms most state-of-the-art proxies in terms of architecture selection on five benchmarks, with computation time reduced by three orders of magnitude. We further compare the SED-based NAS with state-of-the-art proxies. SED-based NAS selects the architecture with higher accuracy and fewer parameters in only one second. The theoretical analyses of local entropy and experimental results demonstrate that the suppression of local entropy decrease facilitates selecting optimal architectures in Zero-Shot NAS.
Abstract:Multimodal large language models (MLLMs) have made significant strides by integrating visual and textual modalities. A critical factor in training MLLMs is the quality of image-text pairs within multimodal pretraining datasets. However, $\textit {de facto}$ filter-based data quality enhancement paradigms often discard a substantial portion of high-quality image data due to inadequate semantic alignment between images and texts, leading to inefficiencies in data utilization and scalability. In this paper, we propose the Adaptive Image-Text Quality Enhancer (AITQE), a model that dynamically assesses and enhances the quality of image-text pairs. AITQE employs a text rewriting mechanism for low-quality pairs and incorporates a negative sample learning strategy to improve evaluative capabilities by integrating deliberately selected low-quality samples during training. Unlike prior approaches that significantly alter text distributions, our method minimally adjusts text to preserve data volume while enhancing quality. Experimental results demonstrate that AITQE surpasses existing methods on various benchmark, effectively leveraging raw data and scaling efficiently with increasing data volumes. We hope our work will inspire future works. The code and model are available at: https://github.com/hanhuang22/AITQE.
Abstract:Video Multimodal Large Language Models (MLLMs) have shown remarkable capability of understanding the video semantics on various downstream tasks. Despite the advancements, there is still a lack of systematic research on visual context representation, which refers to the scheme to select frames from a video and further select the tokens from a frame. In this paper, we explore the design space for visual context representation, and aim to improve the performance of video MLLMs by finding more effective representation schemes. Firstly, we formulate the task of visual context representation as a constrained optimization problem, and model the language modeling loss as a function of the number of frames and the number of embeddings (or tokens) per frame, given the maximum visual context window size. Then, we explore the scaling effects in frame selection and token selection respectively, and fit the corresponding function curve by conducting extensive empirical experiments. We examine the effectiveness of typical selection strategies and present empirical findings to determine the two factors. Furthermore, we study the joint effect of frame selection and token selection, and derive the optimal formula for determining the two factors. We demonstrate that the derived optimal settings show alignment with the best-performed results of empirical experiments. Our code and model are available at: https://github.com/RUCAIBox/Opt-Visor.
Abstract:Currently, little research has been done on knowledge editing for Large Vision-Language Models (LVLMs). Editing LVLMs faces the challenge of effectively integrating diverse modalities (image and text) while ensuring coherent and contextually relevant modifications. An existing benchmark has three metrics (Reliability, Locality and Generality) to measure knowledge editing for LVLMs. However, the benchmark falls short in the quality of generated images used in evaluation and cannot assess whether models effectively utilize edited knowledge in relation to the associated content. We adopt different data collection methods to construct a new benchmark, $\textbf{KEBench}$, and extend new metric (Portability) for a comprehensive evaluation. Leveraging a multimodal knowledge graph, our image data exhibits clear directionality towards entities. This directional aspect can be further utilized to extract entity-related knowledge and form editing data. We conducted experiments of different editing methods on five LVLMs, and thoroughly analyze how these methods impact the models. The results reveal strengths and deficiencies of these methods and, hopefully, provide insights into potential avenues for future research.
Abstract:Random geometric graphs are random graph models defined on metric spaces. Such a model is defined by first sampling points from a metric space and then connecting each pair of sampled points with probability that depends on their distance, independently among pairs. In this work, we show how to efficiently reconstruct the geometry of the underlying space from the sampled graph under the manifold assumption, i.e., assuming that the underlying space is a low dimensional manifold and that the connection probability is a strictly decreasing function of the Euclidean distance between the points in a given embedding of the manifold in $\mathbb{R}^N$. Our work complements a large body of work on manifold learning, where the goal is to recover a manifold from sampled points sampled in the manifold along with their (approximate) distances.
Abstract:Recent advances in deep learning has witnessed many innovative frameworks that solve high dimensional mean-field games (MFG) accurately and efficiently. These methods, however, are restricted to solving single-instance MFG and demands extensive computational time per instance, limiting practicality. To overcome this, we develop a novel framework to learn the MFG solution operator. Our model takes a MFG instances as input and output their solutions with one forward pass. To ensure the proposed parametrization is well-suited for operator learning, we introduce and prove the notion of sampling invariance for our model, establishing its convergence to a continuous operator in the sampling limit. Our method features two key advantages. First, it is discretization-free, making it particularly suitable for learning operators of high-dimensional MFGs. Secondly, it can be trained without the need for access to supervised labels, significantly reducing the computational overhead associated with creating training datasets in existing operator learning methods. We test our framework on synthetic and realistic datasets with varying complexity and dimensionality to substantiate its robustness.
Abstract:Recently, neural implicit functions have demonstrated remarkable results in the field of multi-view reconstruction. However, most existing methods are tailored for dense views and exhibit unsatisfactory performance when dealing with sparse views. Several latest methods have been proposed for generalizing implicit reconstruction to address the sparse view reconstruction task, but they still suffer from high training costs and are merely valid under carefully selected perspectives. In this paper, we propose a novel sparse view reconstruction framework that leverages on-surface priors to achieve highly faithful surface reconstruction. Specifically, we design several constraints on global geometry alignment and local geometry refinement for jointly optimizing coarse shapes and fine details. To achieve this, we train a neural network to learn a global implicit field from the on-surface points obtained from SfM and then leverage it as a coarse geometric constraint. To exploit local geometric consistency, we project on-surface points onto seen and unseen views, treating the consistent loss of projected features as a fine geometric constraint. The experimental results with DTU and BlendedMVS datasets in two prevalent sparse settings demonstrate significant improvements over the state-of-the-art methods.