Abstract:Despite advancements in Graph Neural Networks (GNNs), adaptive attacks continue to challenge their robustness. Certified robustness based on randomized smoothing has emerged as a promising solution, offering provable guarantees that a model's predictions remain stable under adversarial perturbations within a specified range. However, existing methods face a critical trade-off between accuracy and robustness, as achieving stronger robustness requires introducing greater noise into the input graph. This excessive randomization degrades data quality and disrupts prediction consistency, limiting the practical deployment of certifiably robust GNNs in real-world scenarios where both accuracy and robustness are essential. To address this challenge, we propose \textbf{AuditVotes}, the first framework to achieve both high clean accuracy and certifiably robust accuracy for GNNs. It integrates randomized smoothing with two key components, \underline{au}gmentation and con\underline{dit}ional smoothing, aiming to improve data quality and prediction consistency. The augmentation, acting as a pre-processing step, de-noises the randomized graph, significantly improving data quality and clean accuracy. The conditional smoothing, serving as a post-processing step, employs a filtering function to selectively count votes, thereby filtering low-quality predictions and improving voting consistency. Extensive experimental results demonstrate that AuditVotes significantly enhances clean accuracy, certified robustness, and empirical robustness while maintaining high computational efficiency. Notably, compared to baseline randomized smoothing, AuditVotes improves clean accuracy by $437.1\%$ and certified accuracy by $409.3\%$ when the attacker can arbitrarily insert $20$ edges on the Cora-ML datasets, representing a substantial step toward deploying certifiably robust GNNs in real-world applications.
Abstract:This paper describes a streaming audio-to-MIDI piano transcription approach that aims to sequentially translate a music signal into a sequence of note onset and offset events. The sequence-to-sequence nature of this task may call for the computationally-intensive transformer model for better performance, which has recently been used for offline transcription benchmarks and could be extended for streaming transcription with causal attention mechanisms. We assume that the performance limitation of this naive approach lies in the decoder. Although time-frequency features useful for onset detection are considerably different from those for offset detection, the single decoder is trained to output a mixed sequence of onset and offset events without guarantee of the correspondence between the onset and offset events of the same note. To overcome this limitation, we propose a streaming encoder-decoder model that uses a convolutional encoder aggregating local acoustic features, followed by an autoregressive Transformer decoder detecting a variable number of onset events and another decoder detecting the offset events for the active pitches with validation of the sustain pedal at each time frame. Experiments using the MAESTRO dataset showed that the proposed streaming method performed comparably with or even better than the state-of-the-art offline methods while significantly reducing the computational cost.
Abstract:We present an Adversarially Pre-trained Transformer (APT) that is able to perform zero-shot meta-learning on tabular prediction tasks without pre-training on any real-world dataset, extending on the recent development of Prior-Data Fitted Networks (PFNs) and TabPFN. Specifically, APT is pre-trained with adversarial synthetic data agents, who continue to shift their underlying data generating distribution and deliberately challenge the model with different synthetic datasets. In addition, we propose a mixture block architecture that is able to handle classification tasks with arbitrary number of classes, addressing the class size limitation -- a crucial weakness of prior deep tabular zero-shot learners. In experiments, we show that our framework matches state-of-the-art performance on small classification tasks without filtering on dataset characteristics such as number of classes and number of missing values, while maintaining an average runtime under one second. On common benchmark dataset suites in both classification and regression, we show that adversarial pre-training was able to enhance TabPFN's performance. In our analysis, we demonstrate that the adversarial synthetic data agents were able to generate a more diverse collection of data compared to the ordinary random generator in TabPFN. In addition, we demonstrate that our mixture block neural design has improved generalizability and greatly accelerated pre-training.
Abstract:Recently, Gaussian Splatting has sparked a new trend in the field of computer vision. Apart from novel view synthesis, it has also been extended to the area of multi-view reconstruction. The latest methods facilitate complete, detailed surface reconstruction while ensuring fast training speed. However, these methods still require dense input views, and their output quality significantly degrades with sparse views. We observed that the Gaussian primitives tend to overfit the few training views, leading to noisy floaters and incomplete reconstruction surfaces. In this paper, we present an innovative sparse-view reconstruction framework that leverages intra-view depth and multi-view feature consistency to achieve remarkably accurate surface reconstruction. Specifically, we utilize monocular depth ranking information to supervise the consistency of depth distribution within patches and employ a smoothness loss to enhance the continuity of the distribution. To achieve finer surface reconstruction, we optimize the absolute position of depth through multi-view projection features. Extensive experiments on DTU and BlendedMVS demonstrate that our method outperforms state-of-the-art methods with a speedup of 60x to 200x, achieving swift and fine-grained mesh reconstruction without the need for costly pre-training.
Abstract:In recent years, reconstructing indoor scene geometry from multi-view images has achieved encouraging accomplishments. Current methods incorporate monocular priors into neural implicit surface models to achieve high-quality reconstructions. However, these methods require hundreds of images for scene reconstruction. When only a limited number of views are available as input, the performance of monocular priors deteriorates due to scale ambiguity, leading to the collapse of the reconstructed scene geometry. In this paper, we propose a new method, named Sparis, for indoor surface reconstruction from sparse views. Specifically, we investigate the impact of monocular priors on sparse scene reconstruction, introducing a novel prior based on inter-image matching information. Our prior offers more accurate depth information while ensuring cross-view matching consistency. Additionally, we employ an angular filter strategy and an epipolar matching weight function, aiming to reduce errors due to view matching inaccuracies, thereby refining the inter-image prior for improved reconstruction accuracy. The experiments conducted on widely used benchmarks demonstrate superior performance in sparse-view scene reconstruction.
Abstract:Estimating an individual's potential outcomes under counterfactual treatments is a challenging task for traditional causal inference and supervised learning approaches when the outcome is high-dimensional (e.g. gene expressions, facial images) and covariates are relatively limited. In this case, to predict one's outcomes under counterfactual treatments, it is crucial to leverage individual information contained in its high-dimensional observed outcome in addition to the covariates. Prior works using variational inference in counterfactual generative modeling have been focusing on neural adaptations and model variants within the conditional variational autoencoder formulation, which we argue is fundamentally ill-suited to the notion of counterfactual in causal inference. In this work, we present a novel variational Bayesian causal inference framework and its theoretical backings to properly handle counterfactual generative modeling tasks, through which we are able to conduct counterfactual supervision end-to-end during training without any counterfactual samples, and encourage latent disentanglement that aids the correct identification of causal effect in counterfactual generations. In experiments, we demonstrate the advantage of our framework compared to state-of-the-art models in counterfactual generative modeling on multiple benchmarks.
Abstract:Organ transplantation serves as the primary therapeutic strategy for end-stage organ failures. However, allograft rejection is a common complication of organ transplantation. Histological assessment is essential for the timely detection and diagnosis of transplant rejection and remains the gold standard. Nevertheless, the traditional histochemical staining process is time-consuming, costly, and labor-intensive. Here, we present a panel of virtual staining neural networks for lung and heart transplant biopsies, which digitally convert autofluorescence microscopic images of label-free tissue sections into their brightfield histologically stained counterparts, bypassing the traditional histochemical staining process. Specifically, we virtually generated Hematoxylin and Eosin (H&E), Masson's Trichrome (MT), and Elastic Verhoeff-Van Gieson (EVG) stains for label-free transplant lung tissue, along with H&E and MT stains for label-free transplant heart tissue. Subsequent blind evaluations conducted by three board-certified pathologists have confirmed that the virtual staining networks consistently produce high-quality histology images with high color uniformity, closely resembling their well-stained histochemical counterparts across various tissue features. The use of virtually stained images for the evaluation of transplant biopsies achieved comparable diagnostic outcomes to those obtained via traditional histochemical staining, with a concordance rate of 82.4% for lung samples and 91.7% for heart samples. Moreover, virtual staining models create multiple stains from the same autofluorescence input, eliminating structural mismatches observed between adjacent sections stained in the traditional workflow, while also saving tissue, expert time, and staining costs.
Abstract:We propose Deep Longitudinal Targeted Minimum Loss-based Estimation (Deep LTMLE), a novel approach to estimate the counterfactual mean of outcome under dynamic treatment policies in longitudinal problem settings. Our approach utilizes a transformer architecture with heterogeneous type embedding trained using temporal-difference learning. After obtaining an initial estimate using the transformer, following the targeted minimum loss-based likelihood estimation (TMLE) framework, we statistically corrected for the bias commonly associated with machine learning algorithms. Furthermore, our method also facilitates statistical inference by enabling the provision of 95% confidence intervals grounded in asymptotic statistical theory. Simulation results demonstrate our method's superior performance over existing approaches, particularly in complex, long time-horizon scenarios. It remains effective in small-sample, short-duration contexts, matching the performance of asymptotically efficient estimators. To demonstrate our method in practice, we applied our method to estimate counterfactual mean outcomes for standard versus intensive blood pressure management strategies in a real-world cardiovascular epidemiology cohort study.
Abstract:Speech Emotion Recognition (SER) has become a growing focus of research in human-computer interaction. Spatiotemporal features play a crucial role in SER, yet current research lacks comprehensive spatiotemporal feature learning. This paper focuses on addressing this gap by proposing a novel approach. In this paper, we employ Convolutional Neural Network (CNN) with varying kernel sizes for spatial and temporal feature extraction. Additionally, we introduce Squeeze-and-Excitation (SE) modules to capture and fuse multi-scale features, facilitating effective information fusion for improved emotion recognition and a deeper understanding of the temporal evolution of speech emotion. Moreover, we employ skip connections and Spatial Dropout (SD) layers to prevent overfitting and increase the model's depth. Our method outperforms the previous state-of-the-art method, achieving an average UAR and WAR improvement of 1.62% and 1.32%, respectively, across six benchmark SER datasets. Further experiments demonstrated that our method can fully extract spatiotemporal features in low-resource conditions.
Abstract:Recently, neural implicit functions have demonstrated remarkable results in the field of multi-view reconstruction. However, most existing methods are tailored for dense views and exhibit unsatisfactory performance when dealing with sparse views. Several latest methods have been proposed for generalizing implicit reconstruction to address the sparse view reconstruction task, but they still suffer from high training costs and are merely valid under carefully selected perspectives. In this paper, we propose a novel sparse view reconstruction framework that leverages on-surface priors to achieve highly faithful surface reconstruction. Specifically, we design several constraints on global geometry alignment and local geometry refinement for jointly optimizing coarse shapes and fine details. To achieve this, we train a neural network to learn a global implicit field from the on-surface points obtained from SfM and then leverage it as a coarse geometric constraint. To exploit local geometric consistency, we project on-surface points onto seen and unseen views, treating the consistent loss of projected features as a fine geometric constraint. The experimental results with DTU and BlendedMVS datasets in two prevalent sparse settings demonstrate significant improvements over the state-of-the-art methods.