Abstract:Detecting out-of-distribution inputs for visual recognition models has become critical in safe deep learning. This paper proposes a novel hierarchical visual category modeling scheme to separate out-of-distribution data from in-distribution data through joint representation learning and statistical modeling. We learn a mixture of Gaussian models for each in-distribution category. There are many Gaussian mixture models to model different visual categories. With these Gaussian models, we design an in-distribution score function by aggregating multiple Mahalanobis-based metrics. We don't use any auxiliary outlier data as training samples, which may hurt the generalization ability of out-of-distribution detection algorithms. We split the ImageNet-1k dataset into ten folds randomly. We use one fold as the in-distribution dataset and the others as out-of-distribution datasets to evaluate the proposed method. We also conduct experiments on seven popular benchmarks, including CIFAR, iNaturalist, SUN, Places, Textures, ImageNet-O, and OpenImage-O. Extensive experiments indicate that the proposed method outperforms state-of-the-art algorithms clearly. Meanwhile, we find that our visual representation has a competitive performance when compared with features learned by classical methods. These results demonstrate that the proposed method hasn't weakened the discriminative ability of visual recognition models and keeps high efficiency in detecting out-of-distribution samples.
Abstract:Climate change exacerbates riverine floods, which occur with higher frequency and intensity than ever. The much-needed forecasting systems typically rely on accurate river discharge predictions. To this end, the SOTA data-driven approaches treat forecasting at spatially distributed gauge stations as isolated problems, even within the same river network. However, incorporating the known topology of the river network into the prediction model has the potential to leverage the adjacency relationship between gauges. Thus, we model river discharge for a network of gauging stations with GNNs and compare the forecasting performance achieved by different adjacency definitions. Our results show that the model fails to benefit from the river network topology information, both on the entire network and small subgraphs. The learned edge weights correlate with neither of the static definitions and exhibit no regular pattern. Furthermore, the GNNs struggle to predict sudden, narrow discharge spikes. Our work hints at a more general underlying phenomenon of neural prediction not always benefitting from graphical structure and may inspire a systematic study of the conditions under which this happens.
Abstract:In recent years, diffusion-based text-to-music (TTM) generation has gained prominence, offering a novel approach to synthesizing musical content from textual descriptions. Achieving high accuracy and diversity in this generation process requires extensive, high-quality data, which often constitutes only a fraction of available datasets. Within open-source datasets, the prevalence of issues like mislabeling, weak labeling, unlabeled data, and low-quality music waveform significantly hampers the development of music generation models. To overcome these challenges, we introduce a novel quality-aware masked diffusion transformer (QA-MDT) approach that enables generative models to discern the quality of input music waveform during training. Building on the unique properties of musical signals, we have adapted and implemented a MDT model for TTM task, while further unveiling its distinct capacity for quality control. Moreover, we address the issue of low-quality captions with a caption refinement data processing approach. Our demo page is shown in https://qa-mdt.github.io/. Code on https://github.com/ivcylc/qa-mdt
Abstract:Training an effective deep learning model to learn ocean processes involves careful choices of various hyperparameters. We leverage the advanced search algorithms for multiobjective optimization in DeepHyper, a scalable hyperparameter optimization software, to streamline the development of neural networks tailored for ocean modeling. The focus is on optimizing Fourier neural operators (FNOs), a data-driven model capable of simulating complex ocean behaviors. Selecting the correct model and tuning the hyperparameters are challenging tasks, requiring much effort to ensure model accuracy. DeepHyper allows efficient exploration of hyperparameters associated with data preprocessing, FNO architecture-related hyperparameters, and various model training strategies. We aim to obtain an optimal set of hyperparameters leading to the most performant model. Moreover, on top of the commonly used mean squared error for model training, we propose adopting the negative anomaly correlation coefficient as the additional loss term to improve model performance and investigate the potential trade-off between the two terms. The experimental results show that the optimal set of hyperparameters enhanced model performance in single timestepping forecasting and greatly exceeded the baseline configuration in the autoregressive rollout for long-horizon forecasting up to 30 days. Utilizing DeepHyper, we demonstrate an approach to enhance the use of FNOs in ocean dynamics forecasting, offering a scalable solution with improved precision.
Abstract:Video Question Answering (VideoQA) aims to answer natural language questions based on the information observed in videos. Despite the recent success of Large Multimodal Models (LMMs) in image-language understanding and reasoning, they deal with VideoQA insufficiently by simply taking uniformly sampled frames as visual inputs, which ignores question-relevant visual clues. Moreover, there are no human annotations for question-critical timestamps in existing VideoQA datasets. In light of this, we propose a novel weakly supervised framework to enforce the LMMs to reason out the answers with question-critical moments as visual inputs. Specifically, we fuse the question and answer pairs as event descriptions to find multiple keyframes as target moments, which will be pseudo-labels. With these pseudo-labels as additionally weak supervision, we devise a lightweight Gaussian-based Contrastive Grounding (GCG) module. GCG learns multiple Gaussian functions to characterize the temporal structure of the video, and sample question-critical frames as positive moments to be the visual inputs of LMMs. Extensive experiments on several VideoQA benchmarks verify the effectiveness of our framework, and we achieve substantial improvements compared to previous state-of-the-art methods.
Abstract:Traditional control theory-based methods require tailored engineering for each system and constant fine-tuning. In power plant control, one often needs to obtain a precise representation of the system dynamics and carefully design the control scheme accordingly. Model-free Reinforcement learning (RL) has emerged as a promising solution for control tasks due to its ability to learn from trial-and-error interactions with the environment. It eliminates the need for explicitly modeling the environment's dynamics, which is potentially inaccurate. However, the direct imposition of state constraints in power plant control raises challenges for standard RL methods. To address this, we propose a chance-constrained RL algorithm based on Proximal Policy Optimization for supervisory control. Our method employs Lagrangian relaxation to convert the constrained optimization problem into an unconstrained objective, where trainable Lagrange multipliers enforce the state constraints. Our approach achieves the smallest distance of violation and violation rate in a load-follow maneuver for an advanced Nuclear Power Plant design.
Abstract:Modeling is crucial to understanding the effect of greenhouse gases, warming, and ice sheet melting on the ocean. At the same time, ocean processes affect phenomena such as hurricanes and droughts. Parameters in the models that cannot be physically measured have a significant effect on the model output. For an idealized ocean model, we generated perturbed parameter ensemble data and trained surrogate neural network models. The neural surrogates accurately predicted the one-step forward dynamics, of which we then computed the parametric sensitivity.
Abstract:Machine learning (ML) methods offer a wide range of configurable hyperparameters that have a significant influence on their performance. While accuracy is a commonly used performance objective, in many settings, it is not sufficient. Optimizing the ML models with respect to multiple objectives such as accuracy, confidence, fairness, calibration, privacy, latency, and memory consumption is becoming crucial. To that end, hyperparameter optimization, the approach to systematically optimize the hyperparameters, which is already challenging for a single objective, is even more challenging for multiple objectives. In addition, the differences in objective scales, the failures, and the presence of outlier values in objectives make the problem even harder. We propose a multi-objective Bayesian optimization (MoBO) algorithm that addresses these problems through uniform objective normalization and randomized weights in scalarization. We increase the efficiency of our approach by imposing constraints on the objective to avoid exploring unnecessary configurations (e.g., insufficient accuracy). Finally, we leverage an approach to parallelize the MoBO which results in a 5x speed-up when using 16x more workers.
Abstract:Hyperparameter optimization (HPO) is crucial for fine-tuning machine learning models but can be computationally expensive. To reduce costs, Multi-fidelity HPO (MF-HPO) leverages intermediate accuracy levels in the learning process and discards low-performing models early on. We compared various representative MF-HPO methods against a simple baseline on classical benchmark data. The baseline involved discarding all models except the Top-K after training for only one epoch, followed by further training to select the best model. Surprisingly, this baseline achieved similar results to its counterparts, while requiring an order of magnitude less computation. Upon analyzing the learning curves of the benchmark data, we observed a few dominant learning curves, which explained the success of our baseline. This suggests that researchers should (1) always use the suggested baseline in benchmarks and (2) broaden the diversity of MF-HPO benchmarks to include more complex cases.
Abstract:This paper develops a Deep Graph Operator Network (DeepGraphONet) framework that learns to approximate the dynamics of a complex system (e.g. the power grid or traffic) with an underlying sub-graph structure. We build our DeepGraphONet by fusing the ability of (i) Graph Neural Networks (GNN) to exploit spatially correlated graph information and (ii) Deep Operator Networks~(DeepONet) to approximate the solution operator of dynamical systems. The resulting DeepGraphONet can then predict the dynamics within a given short/medium-term time horizon by observing a finite history of the graph state information. Furthermore, we design our DeepGraphONet to be resolution-independent. That is, we do not require the finite history to be collected at the exact/same resolution. In addition, to disseminate the results from a trained DeepGraphONet, we design a zero-shot learning strategy that enables using it on a different sub-graph. Finally, empirical results on the (i) transient stability prediction problem of power grids and (ii) traffic flow forecasting problem of a vehicular system illustrate the effectiveness of the proposed DeepGraphONet.