Zhilu
Abstract:Pixel grounding, encompassing tasks such as Referring Expression Segmentation (RES), has garnered considerable attention due to its immense potential for bridging the gap between vision and language modalities. However, advancements in this domain are currently constrained by limitations inherent in existing datasets, including limited object categories, insufficient textual diversity, and a scarcity of high-quality annotations. To mitigate these limitations, we introduce GroundingSuite, which comprises: (1) an automated data annotation framework leveraging multiple Vision-Language Model (VLM) agents; (2) a large-scale training dataset encompassing 9.56 million diverse referring expressions and their corresponding segmentations; and (3) a meticulously curated evaluation benchmark consisting of 3,800 images. The GroundingSuite training dataset facilitates substantial performance improvements, enabling models trained on it to achieve state-of-the-art results. Specifically, a cIoU of 68.9 on gRefCOCO and a gIoU of 55.3 on RefCOCOm. Moreover, the GroundingSuite annotation framework demonstrates superior efficiency compared to the current leading data annotation method, i.e., $4.5 \times$ faster than the GLaMM.
Abstract:Prompt tuning of Vision-Language Models (VLMs) such as CLIP, has demonstrated the ability to rapidly adapt to various downstream tasks. However, recent studies indicate that tuned VLMs may suffer from the problem of spurious correlations, where the model relies on spurious features (e.g. background and gender) in the data. This may lead to the model having worse robustness in out-of-distribution data. Standard methods for eliminating spurious correlation typically require us to know the spurious attribute labels of each sample, which is hard in the real world. In this work, we explore improving the group robustness of prompt tuning in VLMs without relying on manual annotation of spurious features. We notice the zero - shot image recognition ability of VLMs and use this ability to identify spurious features, thus avoiding the cost of manual annotation. By leveraging pseudo-spurious attribute annotations, we further propose a method to automatically adjust the training weights of different groups. Extensive experiments show that our approach efficiently improves the worst-group accuracy on CelebA, Waterbirds, and MetaShift datasets, achieving the best robustness gap between the worst-group accuracy and the overall accuracy.
Abstract:The distributed nature of training makes Federated Learning (FL) vulnerable to backdoor attacks, where malicious model updates aim to compromise the global model's performance on specific tasks. Existing defense methods show limited efficacy as they overlook the inconsistency between benign and malicious model updates regarding both general and fine-grained directions. To fill this gap, we introduce AlignIns, a novel defense method designed to safeguard FL systems against backdoor attacks. AlignIns looks into the direction of each model update through a direction alignment inspection process. Specifically, it examines the alignment of model updates with the overall update direction and analyzes the distribution of the signs of their significant parameters, comparing them with the principle sign across all model updates. Model updates that exhibit an unusual degree of alignment are considered malicious and thus be filtered out. We provide the theoretical analysis of the robustness of AlignIns and its propagation error in FL. Our empirical results on both independent and identically distributed (IID) and non-IID datasets demonstrate that AlignIns achieves higher robustness compared to the state-of-the-art defense methods. The code is available at https://github.com/JiiahaoXU/AlignIns.
Abstract:The stochastic interpolant framework offers a powerful approach for constructing generative models based on ordinary differential equations (ODEs) or stochastic differential equations (SDEs) to transform arbitrary data distributions. However, prior analyses of this framework have primarily focused on the continuous-time setting, assuming a perfect solution of the underlying equations. In this work, we present the first discrete-time analysis of the stochastic interpolant framework, where we introduce an innovative discrete-time sampler and derive a finite-time upper bound on its distribution estimation error. Our result provides a novel quantification of how different factors, including the distance between source and target distributions and estimation accuracy, affect the convergence rate and also offers a new principled way to design efficient schedules for convergence acceleration. Finally, numerical experiments are conducted on the discrete-time sampler to corroborate our theoretical findings.
Abstract:The nature of modern data is increasingly real-time, making outlier detection crucial in any data-related field, such as finance for fraud detection and healthcare for monitoring patient vitals. Traditional outlier detection methods, such as the Local Outlier Factor (LOF) algorithm, struggle with real-time data due to the need for extensive recalculations with each new data point, limiting their application in real-time environments. While the Incremental LOF (ILOF) algorithm has been developed to tackle the challenges of online anomaly detection, it remains computationally expensive when processing large streams of data points, and its detection performance may degrade after a certain threshold of points have streamed in. In this paper, we propose a novel approach to enhance the efficiency of LOF algorithms for online anomaly detection, named the Efficient Incremental LOF (EILOF) algorithm. The EILOF algorithm only computes the LOF scores of new points without altering the LOF scores of existing data points. Although exact LOF scores have not yet been computed for the existing points in the new algorithm, datasets often contain noise, and minor deviations in LOF score calculations do not necessarily degrade detection performance. In fact, such deviations can sometimes enhance outlier detection. We systematically tested this approach on both simulated and real-world datasets, demonstrating that EILOF outperforms ILOF as the volume of streaming data increases across various scenarios. The EILOF algorithm not only significantly reduces computational costs, but also systematically improves detection accuracy when the number of additional points increases compared to the ILOF algorithm.
Abstract:Multimodal large language models (MLLMs) enhance their perceptual capabilities by integrating visual and textual information. However, processing the massive number of visual tokens incurs a significant computational cost. Existing analysis of the MLLM attention mechanisms remains shallow, leading to coarse-grain token pruning strategies that fail to effectively balance speed and accuracy. In this paper, we conduct a comprehensive investigation of MLLM attention mechanisms with LLaVA. We find that numerous visual tokens and partial attention computations are redundant during the decoding process. Based on this insight, we propose Spatial-Temporal Visual Token Trimming ($\textbf{ST}^{3}$), a framework designed to accelerate MLLM inference without retraining. $\textbf{ST}^{3}$ consists of two primary components: 1) Progressive Visual Token Pruning (\textbf{PVTP}), which eliminates inattentive visual tokens across layers, and 2) Visual Token Annealing (\textbf{VTA}), which dynamically reduces the number of visual tokens in each layer as the generated tokens grow. Together, these techniques deliver around $\mathbf{2\times}$ faster inference with only about $\mathbf{30\%}$ KV cache memory compared to the original LLaVA, while maintaining consistent performance across various datasets. Crucially, $\textbf{ST}^{3}$ can be seamlessly integrated into existing pre-trained MLLMs, providing a plug-and-play solution for efficient inference.
Abstract:Accurate predictions and uncertainty quantification (UQ) are essential for decision-making in risk-sensitive fields such as system safety modeling. Deep ensembles (DEs) are efficient and scalable methods for UQ in Deep Neural Networks (DNNs); however, their performance is limited when constructed by simply retraining the same DNN multiple times with randomly sampled initializations. To overcome this limitation, we propose a novel method that combines Bayesian optimization (BO) with DE, referred to as BODE, to enhance both predictive accuracy and UQ. We apply BODE to a case study involving a Densely connected Convolutional Neural Network (DCNN) trained on computational fluid dynamics (CFD) data to predict eddy viscosity in sodium fast reactor thermal stratification modeling. Compared to a manually tuned baseline ensemble, BODE estimates total uncertainty approximately four times lower in a noise-free environment, primarily due to the baseline's overestimation of aleatoric uncertainty. Specifically, BODE estimates aleatoric uncertainty close to zero, while aleatoric uncertainty dominates the total uncertainty in the baseline ensemble. We also observe a reduction of more than 30% in epistemic uncertainty. When Gaussian noise with standard deviations of 5% and 10% is introduced into the data, BODE accurately fits the data and estimates uncertainty that aligns with the data noise. These results demonstrate that BODE effectively reduces uncertainty and enhances predictions in data-driven models, making it a flexible approach for various applications requiring accurate predictions and robust UQ.
Abstract:The emergence and growing popularity of multimodal large language models (MLLMs) have significant potential to enhance various aspects of daily life, from improving communication to facilitating learning and problem-solving. Mobile phones, as essential daily companions, represent the most effective and accessible deployment platform for MLLMs, enabling seamless integration into everyday tasks. However, deploying MLLMs on mobile phones presents challenges due to limitations in memory size and computational capability, making it difficult to achieve smooth and real-time processing without extensive optimization. In this paper, we present BlueLM-V-3B, an algorithm and system co-design approach specifically tailored for the efficient deployment of MLLMs on mobile platforms. To be specific, we redesign the dynamic resolution scheme adopted by mainstream MLLMs and implement system optimization for hardware-aware deployment to optimize model inference on mobile phones. BlueLM-V-3B boasts the following key highlights: (1) Small Size: BlueLM-V-3B features a language model with 2.7B parameters and a vision encoder with 400M parameters. (2) Fast Speed: BlueLM-V-3B achieves a generation speed of 24.4 token/s on the MediaTek Dimensity 9300 processor with 4-bit LLM weight quantization. (3) Strong Performance: BlueLM-V-3B has attained the highest average score of 66.1 on the OpenCompass benchmark among models with $\leq$ 4B parameters and surpassed a series of models with much larger parameter sizes (e.g., MiniCPM-V-2.6, InternVL2-8B).
Abstract:Backdoor attacks present a significant threat to the robustness of Federated Learning (FL) due to their stealth and effectiveness. They maintain both the main task of the FL system and the backdoor task simultaneously, causing malicious models to appear statistically similar to benign ones, which enables them to evade detection by existing defense methods. We find that malicious parameters in backdoored models are inactive on the main task, resulting in a significantly large empirical loss during the machine unlearning process on clean inputs. Inspired by this, we propose MASA, a method that utilizes individual unlearning on local models to identify malicious models in FL. To improve the performance of MASA in challenging non-independent and identically distributed (non-IID) settings, we design pre-unlearning model fusion that integrates local models with knowledge learned from other datasets to mitigate the divergence in their unlearning behaviors caused by the non-IID data distributions of clients. Additionally, we propose a new anomaly detection metric with minimal hyperparameters to filter out malicious models efficiently. Extensive experiments on IID and non-IID datasets across six different attacks validate the effectiveness of MASA. To the best of our knowledge, this is the first work to leverage machine unlearning to identify malicious models in FL. Code is available at \url{https://github.com/JiiahaoXU/MASA}.
Abstract:Modeling and producing lifelike clothed human images has attracted researchers' attention from different areas for decades, with the complexity from highly articulated and structured content. Rendering algorithms decompose and simulate the imaging process of a camera, while are limited by the accuracy of modeled variables and the efficiency of computation. Generative models can produce impressively vivid human images, however still lacking in controllability and editability. This paper studies photorealism enhancement of rendered images, leveraging generative power from diffusion models on the controlled basis of rendering. We introduce a novel framework to translate rendered images into their realistic counterparts, which consists of two stages: Domain Knowledge Injection (DKI) and Realistic Image Generation (RIG). In DKI, we adopt positive (real) domain finetuning and negative (rendered) domain embedding to inject knowledge into a pretrained Text-to-image (T2I) diffusion model. In RIG, we generate the realistic image corresponding to the input rendered image, with a Texture-preserving Attention Control (TAC) to preserve fine-grained clothing textures, exploiting the decoupled features encoded in the UNet structure. Additionally, we introduce SynFashion dataset, featuring high-quality digital clothing images with diverse textures. Extensive experimental results demonstrate the superiority and effectiveness of our method in rendered-to-real image translation.