Zhilu
Abstract:The nature of modern data is increasingly real-time, making outlier detection crucial in any data-related field, such as finance for fraud detection and healthcare for monitoring patient vitals. Traditional outlier detection methods, such as the Local Outlier Factor (LOF) algorithm, struggle with real-time data due to the need for extensive recalculations with each new data point, limiting their application in real-time environments. While the Incremental LOF (ILOF) algorithm has been developed to tackle the challenges of online anomaly detection, it remains computationally expensive when processing large streams of data points, and its detection performance may degrade after a certain threshold of points have streamed in. In this paper, we propose a novel approach to enhance the efficiency of LOF algorithms for online anomaly detection, named the Efficient Incremental LOF (EILOF) algorithm. The EILOF algorithm only computes the LOF scores of new points without altering the LOF scores of existing data points. Although exact LOF scores have not yet been computed for the existing points in the new algorithm, datasets often contain noise, and minor deviations in LOF score calculations do not necessarily degrade detection performance. In fact, such deviations can sometimes enhance outlier detection. We systematically tested this approach on both simulated and real-world datasets, demonstrating that EILOF outperforms ILOF as the volume of streaming data increases across various scenarios. The EILOF algorithm not only significantly reduces computational costs, but also systematically improves detection accuracy when the number of additional points increases compared to the ILOF algorithm.
Abstract:Multimodal large language models (MLLMs) enhance their perceptual capabilities by integrating visual and textual information. However, processing the massive number of visual tokens incurs a significant computational cost. Existing analysis of the MLLM attention mechanisms remains shallow, leading to coarse-grain token pruning strategies that fail to effectively balance speed and accuracy. In this paper, we conduct a comprehensive investigation of MLLM attention mechanisms with LLaVA. We find that numerous visual tokens and partial attention computations are redundant during the decoding process. Based on this insight, we propose Spatial-Temporal Visual Token Trimming ($\textbf{ST}^{3}$), a framework designed to accelerate MLLM inference without retraining. $\textbf{ST}^{3}$ consists of two primary components: 1) Progressive Visual Token Pruning (\textbf{PVTP}), which eliminates inattentive visual tokens across layers, and 2) Visual Token Annealing (\textbf{VTA}), which dynamically reduces the number of visual tokens in each layer as the generated tokens grow. Together, these techniques deliver around $\mathbf{2\times}$ faster inference with only about $\mathbf{30\%}$ KV cache memory compared to the original LLaVA, while maintaining consistent performance across various datasets. Crucially, $\textbf{ST}^{3}$ can be seamlessly integrated into existing pre-trained MLLMs, providing a plug-and-play solution for efficient inference.
Abstract:Accurate predictions and uncertainty quantification (UQ) are essential for decision-making in risk-sensitive fields such as system safety modeling. Deep ensembles (DEs) are efficient and scalable methods for UQ in Deep Neural Networks (DNNs); however, their performance is limited when constructed by simply retraining the same DNN multiple times with randomly sampled initializations. To overcome this limitation, we propose a novel method that combines Bayesian optimization (BO) with DE, referred to as BODE, to enhance both predictive accuracy and UQ. We apply BODE to a case study involving a Densely connected Convolutional Neural Network (DCNN) trained on computational fluid dynamics (CFD) data to predict eddy viscosity in sodium fast reactor thermal stratification modeling. Compared to a manually tuned baseline ensemble, BODE estimates total uncertainty approximately four times lower in a noise-free environment, primarily due to the baseline's overestimation of aleatoric uncertainty. Specifically, BODE estimates aleatoric uncertainty close to zero, while aleatoric uncertainty dominates the total uncertainty in the baseline ensemble. We also observe a reduction of more than 30% in epistemic uncertainty. When Gaussian noise with standard deviations of 5% and 10% is introduced into the data, BODE accurately fits the data and estimates uncertainty that aligns with the data noise. These results demonstrate that BODE effectively reduces uncertainty and enhances predictions in data-driven models, making it a flexible approach for various applications requiring accurate predictions and robust UQ.
Abstract:The emergence and growing popularity of multimodal large language models (MLLMs) have significant potential to enhance various aspects of daily life, from improving communication to facilitating learning and problem-solving. Mobile phones, as essential daily companions, represent the most effective and accessible deployment platform for MLLMs, enabling seamless integration into everyday tasks. However, deploying MLLMs on mobile phones presents challenges due to limitations in memory size and computational capability, making it difficult to achieve smooth and real-time processing without extensive optimization. In this paper, we present BlueLM-V-3B, an algorithm and system co-design approach specifically tailored for the efficient deployment of MLLMs on mobile platforms. To be specific, we redesign the dynamic resolution scheme adopted by mainstream MLLMs and implement system optimization for hardware-aware deployment to optimize model inference on mobile phones. BlueLM-V-3B boasts the following key highlights: (1) Small Size: BlueLM-V-3B features a language model with 2.7B parameters and a vision encoder with 400M parameters. (2) Fast Speed: BlueLM-V-3B achieves a generation speed of 24.4 token/s on the MediaTek Dimensity 9300 processor with 4-bit LLM weight quantization. (3) Strong Performance: BlueLM-V-3B has attained the highest average score of 66.1 on the OpenCompass benchmark among models with $\leq$ 4B parameters and surpassed a series of models with much larger parameter sizes (e.g., MiniCPM-V-2.6, InternVL2-8B).
Abstract:Backdoor attacks present a significant threat to the robustness of Federated Learning (FL) due to their stealth and effectiveness. They maintain both the main task of the FL system and the backdoor task simultaneously, causing malicious models to appear statistically similar to benign ones, which enables them to evade detection by existing defense methods. We find that malicious parameters in backdoored models are inactive on the main task, resulting in a significantly large empirical loss during the machine unlearning process on clean inputs. Inspired by this, we propose MASA, a method that utilizes individual unlearning on local models to identify malicious models in FL. To improve the performance of MASA in challenging non-independent and identically distributed (non-IID) settings, we design pre-unlearning model fusion that integrates local models with knowledge learned from other datasets to mitigate the divergence in their unlearning behaviors caused by the non-IID data distributions of clients. Additionally, we propose a new anomaly detection metric with minimal hyperparameters to filter out malicious models efficiently. Extensive experiments on IID and non-IID datasets across six different attacks validate the effectiveness of MASA. To the best of our knowledge, this is the first work to leverage machine unlearning to identify malicious models in FL. Code is available at \url{https://github.com/JiiahaoXU/MASA}.
Abstract:Modeling and producing lifelike clothed human images has attracted researchers' attention from different areas for decades, with the complexity from highly articulated and structured content. Rendering algorithms decompose and simulate the imaging process of a camera, while are limited by the accuracy of modeled variables and the efficiency of computation. Generative models can produce impressively vivid human images, however still lacking in controllability and editability. This paper studies photorealism enhancement of rendered images, leveraging generative power from diffusion models on the controlled basis of rendering. We introduce a novel framework to translate rendered images into their realistic counterparts, which consists of two stages: Domain Knowledge Injection (DKI) and Realistic Image Generation (RIG). In DKI, we adopt positive (real) domain finetuning and negative (rendered) domain embedding to inject knowledge into a pretrained Text-to-image (T2I) diffusion model. In RIG, we generate the realistic image corresponding to the input rendered image, with a Texture-preserving Attention Control (TAC) to preserve fine-grained clothing textures, exploiting the decoupled features encoded in the UNet structure. Additionally, we introduce SynFashion dataset, featuring high-quality digital clothing images with diverse textures. Extensive experimental results demonstrate the superiority and effectiveness of our method in rendered-to-real image translation.
Abstract:Vector data is one of the two core data structures in geographic information science (GIS), essential for accurately storing and representing geospatial information. Shapefile, the most widely used vector data format, has become the industry standard supported by all major geographic information systems. However, processing this data typically requires specialized GIS knowledge and skills, creating a barrier for researchers from other fields and impeding interdisciplinary research in spatial data analysis. Moreover, while large language models (LLMs) have made significant advancements in natural language processing and task automation, they still face challenges in handling the complex spatial and topological relationships inherent in GIS vector data. To address these challenges, we propose ShapefileGPT, an innovative framework powered by LLMs, specifically designed to automate Shapefile tasks. ShapefileGPT utilizes a multi-agent architecture, in which the planner agent is responsible for task decomposition and supervision, while the worker agent executes the tasks. We developed a specialized function library for handling Shapefiles and provided comprehensive API documentation, enabling the worker agent to operate Shapefiles efficiently through function calling. For evaluation, we developed a benchmark dataset based on authoritative textbooks, encompassing tasks in categories such as geometric operations and spatial queries. ShapefileGPT achieved a task success rate of 95.24%, outperforming the GPT series models. In comparison to traditional LLMs, ShapefileGPT effectively handles complex vector data analysis tasks, overcoming the limitations of traditional LLMs in spatial analysis. This breakthrough opens new pathways for advancing automation and intelligence in the GIS field, with significant potential in interdisciplinary data analysis and application contexts.
Abstract:Time-of-flight (TOF) information provides more accurate location data for annihilation photons, thereby enhancing the quality of PET reconstruction images and reducing noise. List-mode reconstruction has a significant advantage in handling TOF information. However, current advanced TOF PET list-mode reconstruction algorithms still require improvements when dealing with low-count data. Deep learning algorithms have shown promising results in PET image reconstruction. Nevertheless, the incorporation of TOF information poses significant challenges related to the storage space required by deep learning methods, particularly for the advanced deep unrolled methods. In this study, we propose a deep unrolled primal dual network for TOF-PET list-mode reconstruction. The network is unrolled into multiple phases, with each phase comprising a dual network for list-mode domain updates and a primal network for image domain updates. We utilize CUDA for parallel acceleration and computation of the system matrix for TOF list-mode data, and we adopt a dynamic access strategy to mitigate memory consumption. Reconstructed images of different TOF resolutions and different count levels show that the proposed method outperforms the LM-OSEM, LM-EMTV, LM-SPDHG,LM-SPDHG-TV and FastPET method in both visually and quantitative analysis. These results demonstrate the potential application of deep unrolled methods for TOF-PET list-mode data and show better performance than current mainstream TOF-PET list-mode reconstruction algorithms, providing new insights for the application of deep learning methods in TOF list-mode data. The codes for this work are available at https://github.com/RickHH/LMPDnet
Abstract:Foundation models (FMs) have shown remarkable advancements in enhancing the performance of intelligent applications. To address the need for data privacy in FM fine-tuning, federated learning has emerged as the de facto framework. Specifically, Federated FMs (FedFMs) fine-tuning using low-rank adaptation (LoRA) modules instead of the full model over multiple clients can achieve both parameter efficiency and data privacy. However, recent studies rarely address the challenges posed by clients with heterogeneous resources, particularly in GPU memory capacity. In this paper, we introduce Fed-piLot, an efficient FedFM fine-tuning framework with optimized local LoRA assignments for heterogeneous clients. By emphasizing the different memory consumption for training different LoRA layers, as well as the varying contributions of different layers to model performance, we formulate the LoRA assignment as a Knapsack Optimization Problem. We design a Local-Global Information Gain Score (IG-Score) based value function to optimize LoRA assignment under clients' memory constraints. To further mitigate the impact of heterogeneity in model updates, we propose a novel Spatial-Temporal model aggregation (STAgg) rule using the Dynamic Weight Adjustment (DWA) strategy. Experimental results on three datasets under both IID and non-IID conditions demonstrate the effectiveness and efficiency of Fed-piLot. The code will be publicly available.
Abstract:Generative Flow Networks (GFlowNets) are a novel class of generative models designed to sample from unnormalized distributions and have found applications in various important tasks, attracting great research interest in their training algorithms. In general, GFlowNets are trained by fitting the forward flow to the backward flow on sampled training objects. Prior work focused on the choice of training objects, parameterizations, sampling and resampling strategies, and backward policies, aiming to enhance credit assignment, exploration, or exploitation of the training process. However, the choice of regression loss, which can highly influence the exploration and exploitation behavior of the under-training policy, has been overlooked. Due to the lack of theoretical understanding for choosing an appropriate regression loss, most existing algorithms train the flow network by minimizing the squared error of the forward and backward flows in log-space, i.e., using the quadratic regression loss. In this work, we rigorously prove that distinct regression losses correspond to specific divergence measures, enabling us to design and analyze regression losses according to the desired properties of the corresponding divergence measures. Specifically, we examine two key properties: zero-forcing and zero-avoiding, where the former promotes exploitation and higher rewards, and the latter encourages exploration and enhances diversity. Based on our theoretical framework, we propose three novel regression losses, namely, Shifted-Cosh, Linex(1/2), and Linex(1). We evaluate them across three benchmarks: hyper-grid, bit-sequence generation, and molecule generation. Our proposed losses are compatible with most existing training algorithms, and significantly improve the performances of the algorithms concerning convergence speed, sample diversity, and robustness.