Abstract:To ensure the thriving development of low-altitude economy, countering unauthorized unmanned aerial vehicles (UAVs) is an essential task. The existing widely deployed base stations hold great potential for joint communication and jamming. In light of this, this paper investigates the joint design of beamforming to simultaneously support communication with legitimate users and countermeasure against unauthorized UAVs based on dual-functional multiple-input multiple-output (MIMO) cellular systems. We first formulate a joint communication and jamming (JCJ) problem, relaxing it through semi-definite relaxation (SDR) to obtain a tractable semi-definite programming (SDP) problem, with SDR providing an essential step toward simplifying the complex JCJ design. Although the solution to the relaxed SDP problem cannot directly solve the original problem, it offers valuable insights for further refinement. Therefore, we design a novel constraint specifically tailored to the structure of the SDP problem, ensuring that the solution adheres to the rank-1 constraint of the original problem. Finally, we validate effectiveness of the proposed JCJ scheme through extensive simulations. Simulation codes are provided to reproduce the results in this paper: https://github.com/LiZhuoRan0. The results confirm that the proposed JCJ scheme can operate effectively when the total number of legitimate users and unauthorized UAVs exceeds the number of antennas.
Abstract:Offline-to-Online Reinforcement Learning has emerged as a powerful paradigm, leveraging offline data for initialization and online fine-tuning to enhance both sample efficiency and performance. However, most existing research has focused on single-agent settings, with limited exploration of the multi-agent extension, i.e., Offline-to-Online Multi-Agent Reinforcement Learning (O2O MARL). In O2O MARL, two critical challenges become more prominent as the number of agents increases: (i) the risk of unlearning pre-trained Q-values due to distributional shifts during the transition from offline-to-online phases, and (ii) the difficulty of efficient exploration in the large joint state-action space. To tackle these challenges, we propose a novel O2O MARL framework called Offline Value Function Memory with Sequential Exploration (OVMSE). First, we introduce the Offline Value Function Memory (OVM) mechanism to compute target Q-values, preserving knowledge gained during offline training, ensuring smoother transitions, and enabling efficient fine-tuning. Second, we propose a decentralized Sequential Exploration (SE) strategy tailored for O2O MARL, which effectively utilizes the pre-trained offline policy for exploration, thereby significantly reducing the joint state-action space to be explored. Extensive experiments on the StarCraft Multi-Agent Challenge (SMAC) demonstrate that OVMSE significantly outperforms existing baselines, achieving superior sample efficiency and overall performance.
Abstract:Explainable molecular property prediction is essential for various scientific fields, such as drug discovery and material science. Despite delivering intrinsic explainability, linear models struggle with capturing complex, non-linear patterns. Large language models (LLMs), on the other hand, yield accurate predictions through powerful inference capabilities yet fail to provide chemically meaningful explanations for their predictions. This work proposes a novel framework, called MoleX, which leverages LLM knowledge to build a simple yet powerful linear model for accurate molecular property prediction with faithful explanations. The core of MoleX is to model complicated molecular structure-property relationships using a simple linear model, augmented by LLM knowledge and a crafted calibration strategy. Specifically, to extract the maximum amount of task-relevant knowledge from LLM embeddings, we employ information bottleneck-inspired fine-tuning and sparsity-inducing dimensionality reduction. These informative embeddings are then used to fit a linear model for explainable inference. Moreover, we introduce residual calibration to address prediction errors stemming from linear models' insufficient expressiveness of complex LLM embeddings, thus recovering the LLM's predictive power and boosting overall accuracy. Theoretically, we provide a mathematical foundation to justify MoleX's explainability. Extensive experiments demonstrate that MoleX outperforms existing methods in molecular property prediction, establishing a new milestone in predictive performance, explainability, and efficiency. In particular, MoleX enables CPU inference and accelerates large-scale dataset processing, achieving comparable performance 300x faster with 100,000 fewer parameters than LLMs. Additionally, the calibration improves model performance by up to 12.7% without compromising explainability.
Abstract:Generative Flow Networks (GFlowNets) are a novel class of generative models designed to sample from unnormalized distributions and have found applications in various important tasks, attracting great research interest in their training algorithms. In general, GFlowNets are trained by fitting the forward flow to the backward flow on sampled training objects. Prior work focused on the choice of training objects, parameterizations, sampling and resampling strategies, and backward policies, aiming to enhance credit assignment, exploration, or exploitation of the training process. However, the choice of regression loss, which can highly influence the exploration and exploitation behavior of the under-training policy, has been overlooked. Due to the lack of theoretical understanding for choosing an appropriate regression loss, most existing algorithms train the flow network by minimizing the squared error of the forward and backward flows in log-space, i.e., using the quadratic regression loss. In this work, we rigorously prove that distinct regression losses correspond to specific divergence measures, enabling us to design and analyze regression losses according to the desired properties of the corresponding divergence measures. Specifically, we examine two key properties: zero-forcing and zero-avoiding, where the former promotes exploitation and higher rewards, and the latter encourages exploration and enhances diversity. Based on our theoretical framework, we propose three novel regression losses, namely, Shifted-Cosh, Linex(1/2), and Linex(1). We evaluate them across three benchmarks: hyper-grid, bit-sequence generation, and molecule generation. Our proposed losses are compatible with most existing training algorithms, and significantly improve the performances of the algorithms concerning convergence speed, sample diversity, and robustness.
Abstract:Deep Multi-agent Reinforcement Learning (MARL) relies on neural networks with numerous parameters in multi-agent scenarios, often incurring substantial computational overhead. Consequently, there is an urgent need to expedite training and enable model compression in MARL. This paper proposes the utilization of dynamic sparse training (DST), a technique proven effective in deep supervised learning tasks, to alleviate the computational burdens in MARL training. However, a direct adoption of DST fails to yield satisfactory MARL agents, leading to breakdowns in value learning within deep sparse value-based MARL models. Motivated by this challenge, we introduce an innovative Multi-Agent Sparse Training (MAST) framework aimed at simultaneously enhancing the reliability of learning targets and the rationality of sample distribution to improve value learning in sparse models. Specifically, MAST incorporates the Soft Mellowmax Operator with a hybrid TD-($\lambda$) schema to establish dependable learning targets. Additionally, it employs a dual replay buffer mechanism to enhance the distribution of training samples. Building upon these aspects, MAST utilizes gradient-based topology evolution to exclusively train multiple MARL agents using sparse networks. Our comprehensive experimental investigation across various value-based MARL algorithms on multiple benchmarks demonstrates, for the first time, significant reductions in redundancy of up to $20\times$ in Floating Point Operations (FLOPs) for both training and inference, with less than $3\%$ performance degradation.
Abstract:The advent of large language models (LLMs) has revolutionized online content creation, making it much easier to generate high-quality fake news. This misuse threatens the integrity of our digital environment and ethical standards. Therefore, understanding the motivations and mechanisms behind LLM-generated fake news is crucial. In this study, we analyze the creation of fake news from a social psychology perspective and develop a comprehensive LLM-based theoretical framework, LLM-Fake Theory. We introduce a novel pipeline that automates the generation of fake news using LLMs, thereby eliminating the need for manual annotation. Utilizing this pipeline, we create a theoretically informed Machine-generated Fake news dataset, MegaFake, derived from the GossipCop dataset. We conduct comprehensive analyses to evaluate our MegaFake dataset. We believe that our dataset and insights will provide valuable contributions to future research focused on the detection and governance of fake news in the era of LLMs.
Abstract:Robots need to explore their surroundings to adapt to and tackle tasks in unknown environments. Prior work has proposed building scene graphs of the environment but typically assumes that the environment is static, omitting regions that require active interactions. This severely limits their ability to handle more complex tasks in household and office environments: before setting up a table, robots must explore drawers and cabinets to locate all utensils and condiments. In this work, we introduce the novel task of interactive scene exploration, wherein robots autonomously explore environments and produce an action-conditioned scene graph (ACSG) that captures the structure of the underlying environment. The ACSG accounts for both low-level information, such as geometry and semantics, and high-level information, such as the action-conditioned relationships between different entities in the scene. To this end, we present the Robotic Exploration (RoboEXP) system, which incorporates the Large Multimodal Model (LMM) and an explicit memory design to enhance our system's capabilities. The robot reasons about what and how to explore an object, accumulating new information through the interaction process and incrementally constructing the ACSG. We apply our system across various real-world settings in a zero-shot manner, demonstrating its effectiveness in exploring and modeling environments it has never seen before. Leveraging the constructed ACSG, we illustrate the effectiveness and efficiency of our RoboEXP system in facilitating a wide range of real-world manipulation tasks involving rigid, articulated objects, nested objects like Matryoshka dolls, and deformable objects like cloth.
Abstract:Scene representation has been a crucial design choice in robotic manipulation systems. An ideal representation should be 3D, dynamic, and semantic to meet the demands of diverse manipulation tasks. However, previous works often lack all three properties simultaneously. In this work, we introduce D$^3$Fields - dynamic 3D descriptor fields. These fields capture the dynamics of the underlying 3D environment and encode both semantic features and instance masks. Specifically, we project arbitrary 3D points in the workspace onto multi-view 2D visual observations and interpolate features derived from foundational models. The resulting fused descriptor fields allow for flexible goal specifications using 2D images with varied contexts, styles, and instances. To evaluate the effectiveness of these descriptor fields, we apply our representation to a wide range of robotic manipulation tasks in a zero-shot manner. Through extensive evaluation in both real-world scenarios and simulations, we demonstrate that D$^3$Fields are both generalizable and effective for zero-shot robotic manipulation tasks. In quantitative comparisons with state-of-the-art dense descriptors, such as Dense Object Nets and DINO, D$^3$Fields exhibit significantly better generalization abilities and manipulation accuracy.
Abstract:This paper proposes a grant-free massive access scheme based on the millimeter wave (mmWave) extra-large-scale multiple-input multiple-output (XL-MIMO) to support massive Internet-of-Things (IoT) devices with low latency, high data rate, and high localization accuracy in the upcoming sixth-generation (6G) networks. The XL-MIMO consists of multiple antenna subarrays that are widely spaced over the service area to ensure line-of-sight (LoS) transmissions. First, we establish the XL-MIMO-based massive access model considering the near-field spatial non-stationary (SNS) property. Then, by exploiting the block sparsity of subarrays and the SNS property, we propose a structured block orthogonal matching pursuit algorithm for efficient active user detection (AUD) and channel estimation (CE). Furthermore, different sensing matrices are applied in different pilot subcarriers for exploiting the diversity gains. Additionally, a multi-subarray collaborative localization algorithm is designed for localization. In particular, the angle of arrival (AoA) and time difference of arrival (TDoA) of the LoS links between active users and related subarrays are extracted from the estimated XL-MIMO channels, and then the coordinates of active users are acquired by jointly utilizing the AoAs and TDoAs. Simulation results show that the proposed algorithms outperform existing algorithms in terms of AUD and CE performance and can achieve centimeter-level localization accuracy.
Abstract:We present a novel Diffusion Offline Multi-agent Model (DOM2) for offline Multi-Agent Reinforcement Learning (MARL). Different from existing algorithms that rely mainly on conservatism in policy design, DOM2 enhances policy expressiveness and diversity based on diffusion. Specifically, we incorporate a diffusion model into the policy network and propose a trajectory-based data-augmentation scheme in training. These key ingredients make our algorithm more robust to environment changes and achieve significant improvements in performance, generalization and data-efficiency. Our extensive experimental results demonstrate that DOM2 outperforms existing state-of-the-art methods in multi-agent particle and multi-agent MuJoCo environments, and generalizes significantly better in shifted environments thanks to its high expressiveness and diversity. Furthermore, DOM2 shows superior data efficiency and can achieve state-of-the-art performance with $20+$ times less data compared to existing algorithms.