Abstract:Claim verification is the task of determining whether a claim is supported or refuted by evidence. Self-improvement methods, where reasoning chains are generated and those leading to correct results are selected for training, have succeeded in tasks like mathematical problem solving. However, in claim verification, this approach struggles. Low-quality reasoning chains may falsely match binary truth labels, introducing faulty reasoning into the self-improvement process and ultimately degrading performance. To address this, we propose STRIVE: Structured Reasoning for Self-Improved Verification. Our method introduces a structured reasoning design with Claim Decomposition, Entity Analysis, and Evidence Grounding Verification. These components improve reasoning quality, reduce errors, and provide additional supervision signals for self-improvement. STRIVE begins with a warm-up phase, where the base model is fine-tuned on a small number of annotated examples to learn the structured reasoning design. It is then applied to generate reasoning chains for all training examples, selecting only those that are correct and structurally sound for subsequent self-improvement training. We demonstrate that STRIVE achieves significant improvements over baseline models, with a 31.4% performance gain over the base model and 20.7% over Chain of Thought on the HOVER datasets, highlighting its effectiveness.
Abstract:Generative tasks about molecules, including but not limited to molecule generation, are crucial for drug discovery and material design, and have consistently attracted significant attention. In recent years, diffusion models have emerged as an impressive class of deep generative models, sparking extensive research and leading to numerous studies on their application to molecular generative tasks. Despite the proliferation of related work, there remains a notable lack of up-to-date and systematic surveys in this area. Particularly, due to the diversity of diffusion model formulations, molecular data modalities, and generative task types, the research landscape is challenging to navigate, hindering understanding and limiting the area's growth. To address this, this paper conducts a comprehensive survey of diffusion model-based molecular generative methods. We systematically review the research from the perspectives of methodological formulations, data modalities, and task types, offering a novel taxonomy. This survey aims to facilitate understanding and further flourishing development in this area. The relevant papers are summarized at: https://github.com/AzureLeon1/awesome-molecular-diffusion-models.
Abstract:Hallucination has emerged as a significant barrier to the effective application of Large Language Models (LLMs). In this work, we introduce a novel Attention-Guided SElf-Reflection (AGSER) approach for zero-shot hallucination detection in LLMs. The AGSER method utilizes attention contributions to categorize the input query into attentive and non-attentive queries. Each query is then processed separately through the LLMs, allowing us to compute consistency scores between the generated responses and the original answer. The difference between the two consistency scores serves as a hallucination estimator. In addition to its efficacy in detecting hallucinations, AGSER notably reduces computational complexity, requiring only three passes through the LLM and utilizing two sets of tokens. We have conducted extensive experiments with four widely-used LLMs across three different hallucination benchmarks, demonstrating that our approach significantly outperforms existing methods in zero-shot hallucination detection.
Abstract:The rapid spread of rumors on social media platforms during breaking events severely hinders the dissemination of the truth. Previous studies reveal that the lack of annotated resources hinders the direct detection of unforeseen breaking events not covered in yesterday's news. Leveraging large language models (LLMs) for rumor detection holds significant promise. However, it is challenging for LLMs to provide comprehensive responses to complex or controversial issues due to limited diversity. In this work, we propose the Stance Separated Multi-Agent Debate (S2MAD) to address this issue. Specifically, we firstly introduce Stance Separation, categorizing comments as either supporting or opposing the original claim. Subsequently, claims are classified as subjective or objective, enabling agents to generate reasonable initial viewpoints with different prompt strategies for each type of claim. Debaters then follow specific instructions through multiple rounds of debate to reach a consensus. If a consensus is not reached, a judge agent evaluates the opinions and delivers a final verdict on the claim's veracity. Extensive experiments conducted on two real-world datasets demonstrate that our proposed model outperforms state-of-the-art methods in terms of performance and effectively improves the performance of LLMs in breaking event rumor detection.
Abstract:With the advancement of large language models (LLMs), researchers have explored various methods to optimally leverage their comprehension and generation capabilities in sequential recommendation scenarios. However, several challenges persist in this endeavor. Firstly, most existing approaches rely on the input-output prompting paradigm, which can result in irrelevant or inaccurate responses. Secondly, while there have been attempts to enhance LLMs using prompting strategies such as chain-of-thought (CoT), these efforts have not fully harnessed the reasoning abilities of LLMs or effectively captured the multifaceted information contained within user sequences. To address these limitations, we propose GOT4Rec, a sequential recommendation method that utilizes the graph of thoughts (GoT) prompting strategy. Specifically, we identify and utilize three key types of information within user history sequences: short-term interests, long-term interests and collaborative information from other users. Our approach enables LLMs to independently reason and generate recommendations based on these distinct types of information, subsequently aggregating the results within the GoT framework to derive the final recommended items. This method allows LLMs, with enhanced reasoning capabilities, to more effectively consider the diverse information within user sequences, resulting in more accurate recommendations and more comprehensive explanations. Extensive experiments on real-world datasets demonstrate the effectiveness of GOT4Rec, indicating that it outperforms existing state-of-the-art baselines. Our code is available at https://anonymous.4open.science/r/GOT4Rec-ED99.
Abstract:The advent of large language models (LLMs) has spurred the development of numerous jailbreak techniques aimed at circumventing their security defenses against malicious attacks. An effective jailbreak approach is to identify a domain where safety generalization fails, a phenomenon known as mismatched generalization. In this paper, we introduce two novel jailbreak methods based on mismatched generalization: natural language games and custom language games, both of which effectively bypass the safety mechanisms of LLMs, with various kinds and different variants, making them hard to defend and leading to high attack rates. Natural language games involve the use of synthetic linguistic constructs and the actions intertwined with these constructs, such as the Ubbi Dubbi language. Building on this phenomenon, we propose the custom language games method: by engaging with LLMs using a variety of custom rules, we successfully execute jailbreak attacks across multiple LLM platforms. Extensive experiments demonstrate the effectiveness of our methods, achieving success rates of 93% on GPT-4o, 89% on GPT-4o-mini and 83% on Claude-3.5-Sonnet. Furthermore, to investigate the generalizability of safety alignments, we fine-tuned Llama-3.1-70B with the custom language games to achieve safety alignment within our datasets and found that when interacting through other language games, the fine-tuned models still failed to identify harmful content. This finding indicates that the safety alignment knowledge embedded in LLMs fails to generalize across different linguistic formats, thus opening new avenues for future research in this area.
Abstract:Next point-of-interest (POI) recommendation aims to predict a user's next destination based on sequential check-in history and a set of POI candidates. Graph neural networks (GNNs) have demonstrated a remarkable capability in this endeavor by exploiting the extensive global collaborative signals present among POIs. However, most of the existing graph-based approaches construct graph structures based on pre-defined heuristics, failing to consider inherent hierarchical structures of POI features such as geographical locations and visiting peaks, or suffering from noisy and incomplete structures in graphs. To address the aforementioned issues, this paper presents a novel Bi-level Graph Structure Learning (BiGSL) for next POI recommendation. BiGSL first learns a hierarchical graph structure to capture the fine-to-coarse connectivity between POIs and prototypes, and then uses a pairwise learning module to dynamically infer relationships between POI pairs and prototype pairs. Based on the learned bi-level graphs, our model then employs a multi-relational graph network that considers both POI- and prototype-level neighbors, resulting in improved POI representations. Our bi-level structure learning scheme is more robust to data noise and incompleteness, and improves the exploration ability for recommendation by alleviating sparsity issues. Experimental results on three real-world datasets demonstrate the superiority of our model over existing state-of-the-art methods, with a significant improvement in recommendation accuracy and exploration performance.
Abstract:Molecular property prediction (MPP) is integral to drug discovery and material science, but often faces the challenge of data scarcity in real-world scenarios. Addressing this, few-shot molecular property prediction (FSMPP) has been developed. Unlike other few-shot tasks, FSMPP typically employs a pre-trained molecular encoder and a context-aware classifier, benefiting from molecular pre-training and molecular context information. Despite these advancements, existing methods struggle with the ineffective fine-tuning of pre-trained encoders. We attribute this issue to the imbalance between the abundance of tunable parameters and the scarcity of labeled molecules, and the lack of contextual perceptiveness in the encoders. To overcome this hurdle, we propose a parameter-efficient in-context tuning method, named Pin-Tuning. Specifically, we propose a lightweight adapter for pre-trained message passing layers (MP-Adapter) and Bayesian weight consolidation for pre-trained atom/bond embedding layers (Emb-BWC), to achieve parameter-efficient tuning while preventing over-fitting and catastrophic forgetting. Additionally, we enhance the MP-Adapters with contextual perceptiveness. This innovation allows for in-context tuning of the pre-trained encoder, thereby improving its adaptability for specific FSMPP tasks. When evaluated on public datasets, our method demonstrates superior tuning with fewer trainable parameters, improving few-shot predictive performance.
Abstract:Multimodal large language models (MLLMs) have made significant strides by integrating visual and textual modalities. A critical factor in training MLLMs is the quality of image-text pairs within multimodal pretraining datasets. However, $\textit {de facto}$ filter-based data quality enhancement paradigms often discard a substantial portion of high-quality image data due to inadequate semantic alignment between images and texts, leading to inefficiencies in data utilization and scalability. In this paper, we propose the Adaptive Image-Text Quality Enhancer (AITQE), a model that dynamically assesses and enhances the quality of image-text pairs. AITQE employs a text rewriting mechanism for low-quality pairs and incorporates a negative sample learning strategy to improve evaluative capabilities by integrating deliberately selected low-quality samples during training. Unlike prior approaches that significantly alter text distributions, our method minimally adjusts text to preserve data volume while enhancing quality. Experimental results demonstrate that AITQE surpasses existing methods on various benchmark, effectively leveraging raw data and scaling efficiently with increasing data volumes. We hope our work will inspire future works. The code and model are available at: https://github.com/hanhuang22/AITQE.
Abstract:Knowledge editing has been proposed as an effective method for updating and correcting the internal knowledge of Large Language Models (LLMs). However, existing editing methods often struggle with complex tasks, such as multi-hop reasoning. In this paper, we identify and investigate the phenomenon of Editing Overfit, where edited models assign disproportionately high probabilities to the edit target, hindering the generalization of new knowledge in complex scenarios. We attribute this issue to the current editing paradigm, which places excessive emphasis on the direct correspondence between the input prompt and the edit target for each edit sample. To further explore this issue, we introduce a new benchmark, EVOKE (EValuation of Editing Overfit in Knowledge Editing), along with fine-grained evaluation metrics. Through comprehensive experiments and analysis, we demonstrate that Editing Overfit is prevalent in current editing methods and that common overfitting mitigation strategies are of limited effectiveness in knowledge editing. To overcome this, inspired by LLMs' knowledge recall mechanisms, we propose a new plug-and-play strategy called Learn to Inference (LTI), which introduce a Multi-stage Inference Constraint module to guide the edited models in recalling new knowledge similarly to how unedited LLMs leverage knowledge through in-context learning. Extensive experimental results across a wide range of tasks validate the effectiveness of LTI in mitigating Editing Overfit.