Abstract:Geometric graph is a special kind of graph with geometric features, which is vital to model many scientific problems. Unlike generic graphs, geometric graphs often exhibit physical symmetries of translations, rotations, and reflections, making them ineffectively processed by current Graph Neural Networks (GNNs). To tackle this issue, researchers proposed a variety of Geometric Graph Neural Networks equipped with invariant/equivariant properties to better characterize the geometry and topology of geometric graphs. Given the current progress in this field, it is imperative to conduct a comprehensive survey of data structures, models, and applications related to geometric GNNs. In this paper, based on the necessary but concise mathematical preliminaries, we provide a unified view of existing models from the geometric message passing perspective. Additionally, we summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation. We also discuss the challenges and future potential directions of Geometric GNNs at the end of this survey.
Abstract:Self-alignment is an effective way to reduce the cost of human annotation while ensuring promising model capability. However, most current methods complete the data collection and training steps in a single round, which may overlook the continuously improving ability of self-aligned models. This gives rise to a key query: What if we do multi-time bootstrapping self-alignment? Does this strategy enhance model performance or lead to rapid degradation? In this paper, our pioneering exploration delves into the impact of bootstrapping self-alignment on large language models. Our findings reveal that bootstrapping self-alignment markedly surpasses the single-round approach, by guaranteeing data diversity from in-context learning. To further exploit the capabilities of bootstrapping, we investigate and adjust the training order of data, which yields improved performance of the model. Drawing on these findings, we propose Step-On-Feet Tuning (SOFT) which leverages model's continuously enhanced few-shot ability to boost zero or one-shot performance. Based on easy-to-hard training recipe, we propose SOFT+ which further boost self-alignment's performance. Our experiments demonstrate the efficiency of SOFT (SOFT+) across various classification and generation tasks, highlighting the potential of bootstrapping self-alignment on continually enhancing model alignment performance.
Abstract:The recent surge in the research of diffusion models has accelerated the adoption of text-to-image models in various Artificial Intelligence Generated Content (AIGC) commercial products. While these exceptional AIGC products are gaining increasing recognition and sparking enthusiasm among consumers, the questions regarding whether, when, and how these models might unintentionally reinforce existing societal stereotypes remain largely unaddressed. Motivated by recent advancements in language agents, here we introduce a novel agent architecture tailored for stereotype detection in text-to-image models. This versatile agent architecture is capable of accommodating free-form detection tasks and can autonomously invoke various tools to facilitate the entire process, from generating corresponding instructions and images, to detecting stereotypes. We build the stereotype-relevant benchmark based on multiple open-text datasets, and apply this architecture to commercial products and popular open source text-to-image models. We find that these models often display serious stereotypes when it comes to certain prompts about personal characteristics, social cultural context and crime-related aspects. In summary, these empirical findings underscore the pervasive existence of stereotypes across social dimensions, including gender, race, and religion, which not only validate the effectiveness of our proposed approach, but also emphasize the critical necessity of addressing potential ethical risks in the burgeoning realm of AIGC. As AIGC continues its rapid expansion trajectory, with new models and plugins emerging daily in staggering numbers, the challenge lies in the timely detection and mitigation of potential biases within these models.
Abstract:Simulating and modeling the long-term dynamics of multi-object physical systems is an essential and challenging task. Current studies model the physical systems utilizing Graph Neural Networks (GNNs) with equivariant properties. Specifically, they model the dynamics as a sequence of discrete states with a fixed time interval and learn a direct mapping for all the two adjacent states. However, this direct mapping overlooks the continuous nature between the two states. Namely, we have verified that there are countless possible trajectories between two discrete dynamic states in current GNN-based direct mapping models. This issue greatly hinders the model generalization ability, leading to poor performance of the long-term simulation. In this paper, to better model the latent trajectory through discrete supervision signals, we propose a Physics-Inspired Neural Graph ODE (PINGO) algorithm. In PINGO, to ensure the uniqueness of the trajectory, we construct a Physics-Inspired Neural ODE framework to update the latent trajectory. Meanwhile, to effectively capture intricate interactions among objects, we use a GNN-based model to parameterize Neural ODE in a plug-and-play manner. Furthermore, we prove that the discrepancy between the learned trajectory of PIGNO and the true trajectory can be theoretically bounded. Extensive experiments verify our theoretical findings and demonstrate that our model yields an order-of-magnitude improvement over the state-of-the-art baselines, especially on long-term predictions and roll-out errors.
Abstract:It has been discovered that Graph Convolutional Networks (GCNs) encounter a remarkable drop in performance when multiple layers are piled up. The main factor that accounts for why deep GCNs fail lies in over-smoothing, which isolates the network output from the input with the increase of network depth, weakening expressivity and trainability. In this paper, we start by investigating refined measures upon DropEdge -- an existing simple yet effective technique to relieve over-smoothing. We term our method as DropEdge++ for its two structure-aware samplers in contrast to DropEdge: layer-dependent sampler and feature-dependent sampler. Regarding the layer-dependent sampler, we interestingly find that increasingly sampling edges from the bottom layer yields superior performance than the decreasing counterpart as well as DropEdge. We theoretically reveal this phenomenon with Mean-Edge-Number (MEN), a metric closely related to over-smoothing. For the feature-dependent sampler, we associate the edge sampling probability with the feature similarity of node pairs, and prove that it further correlates the convergence subspace of the output layer with the input features. Extensive experiments on several node classification benchmarks, including both full- and semi- supervised tasks, illustrate the efficacy of DropEdge++ and its compatibility with a variety of backbones by achieving generally better performance over DropEdge and the no-drop version.
Abstract:By formulating data samples' formation as a Markov denoising process, diffusion models achieve state-of-the-art performances in a collection of tasks. Recently, many variants of diffusion models have been proposed to enable controlled sample generation. Most of these existing methods either formulate the controlling information as an input (i.e.,: conditional representation) for the noise approximator, or introduce a pre-trained classifier in the test-phase to guide the Langevin dynamic towards the conditional goal. However, the former line of methods only work when the controlling information can be formulated as conditional representations, while the latter requires the pre-trained guidance classifier to be differentiable. In this paper, we propose a novel framework named RGDM (Reward-Guided Diffusion Model) that guides the training-phase of diffusion models via reinforcement learning (RL). The proposed training framework bridges the objective of weighted log-likelihood and maximum entropy RL, which enables calculating policy gradients via samples from a pay-off distribution proportional to exponential scaled rewards, rather than from policies themselves. Such a framework alleviates the high gradient variances and enables diffusion models to explore for highly rewarded samples in the reverse process. Experiments on 3D shape and molecule generation tasks show significant improvements over existing conditional diffusion models.
Abstract:Many patients with chronic diseases resort to multiple medications to relieve various symptoms, which raises concerns about the safety of multiple medication use, as severe drug-drug antagonism can lead to serious adverse effects or even death. This paper presents a Decision Support System, called DSSDDI, based on drug-drug interactions to support doctors prescribing decisions. DSSDDI contains three modules, Drug-Drug Interaction (DDI) module, Medical Decision (MD) module and Medical Support (MS) module. The DDI module learns safer and more effective drug representations from the drug-drug interactions. To capture the potential causal relationship between DDI and medication use, the MD module considers the representations of patients and drugs as context, DDI and patients' similarity as treatment, and medication use as outcome to construct counterfactual links for the representation learning. Furthermore, the MS module provides drug candidates to doctors with explanations. Experiments on the chronic data collected from the Hong Kong Chronic Disease Study Project and a public diagnostic data MIMIC-III demonstrate that DSSDDI can be a reliable reference for doctors in terms of safety and efficiency of clinical diagnosis, with significant improvements compared to baseline methods.
Abstract:Non-Pharmaceutical Interventions (NPIs), such as social gathering restrictions, have shown effectiveness to slow the transmission of COVID-19 by reducing the contact of people. To support policy-makers, multiple studies have first modeled human mobility via macro indicators (e.g., average daily travel distance) and then studied the effectiveness of NPIs. In this work, we focus on mobility modeling and, from a micro perspective, aim to predict locations that will be visited by COVID-19 cases. Since NPIs generally cause economic and societal loss, such a micro perspective prediction benefits governments when they design and evaluate them. However, in real-world situations, strict privacy data protection regulations result in severe data sparsity problems (i.e., limited case and location information). To address these challenges, we formulate the micro perspective mobility modeling into computing the relevance score between a diffusion and a location, conditional on a geometric graph. we propose a model named Deep Graph Diffusion Infomax (DGDI), which jointly models variables including a geometric graph, a set of diffusions and a set of locations.To facilitate the research of COVID-19 prediction, we present two benchmarks that contain geometric graphs and location histories of COVID-19 cases. Extensive experiments on the two benchmarks show that DGDI significantly outperforms other competing methods.
Abstract:Graph neural networks (GNNs) are popular weapons for modeling relational data. Existing GNNs are not specified for attribute-incomplete graphs, making missing attribute imputation a burning issue. Until recently, many works notice that GNNs are coupled with spectral concentration, which means the spectrum obtained by GNNs concentrates on a local part in spectral domain, e.g., low-frequency due to oversmoothing issue. As a consequence, GNNs may be seriously flawed for reconstructing graph attributes as graph spectral concentration tends to cause a low imputation precision. In this work, we present a regularized graph autoencoder for graph attribute imputation, named MEGAE, which aims at mitigating spectral concentration problem by maximizing the graph spectral entropy. Notably, we first present the method for estimating graph spectral entropy without the eigen-decomposition of Laplacian matrix and provide the theoretical upper error bound. A maximum entropy regularization then acts in the latent space, which directly increases the graph spectral entropy. Extensive experiments show that MEGAE outperforms all the other state-of-the-art imputation methods on a variety of benchmark datasets.
Abstract:The model-based gait recognition methods usually adopt the pedestrian walking postures to identify human beings. However, existing methods did not explicitly resolve the large intra-class variance of human pose due to camera views changing. In this paper, we propose to generate multi-view pose sequences for each single-view pose sample by learning full-rank transformation matrices via lower-upper generative adversarial network (LUGAN). By the prior of camera imaging, we derive that the spatial coordinates between cross-view poses satisfy a linear transformation of a full-rank matrix, thereby, this paper employs the adversarial training to learn transformation matrices from the source pose and target views to obtain the target pose sequences. To this end, we implement a generator composed of graph convolutional (GCN) layers, fully connected (FC) layers and two-branch convolutional (CNN) layers: GCN layers and FC layers encode the source pose sequence and target view, then CNN branches learn a lower triangular matrix and an upper triangular matrix, respectively, finally they are multiplied to formulate the full-rank transformation matrix. For the purpose of adversarial training, we further devise a condition discriminator that distinguishes whether the pose sequence is true or generated. To enable the high-level correlation learning, we propose a plug-and-play module, named multi-scale hypergraph convolution (HGC), to replace the spatial graph convolutional layer in baseline, which could simultaneously model the joint-level, part-level and body-level correlations. Extensive experiments on two large gait recognition datasets, i.e., CASIA-B and OUMVLP-Pose, demonstrate that our method outperforms the baseline model and existing pose-based methods by a large margin.