Abstract:Crystal Structure Prediction (CSP), which aims to generate stable crystal structures from compositions, represents a critical pathway for discovering novel materials. While structure prediction tasks in other domains, such as proteins, have seen remarkable progress, CSP remains a relatively underexplored area due to the more complex geometries inherent in crystal structures. In this paper, we propose Siamese foundation models specifically designed to address CSP. Our pretrain-finetune framework, named DAO, comprises two complementary foundation models: DAO-G for structure generation and DAO-P for energy prediction. Experiments on CSP benchmarks (MP-20 and MPTS-52) demonstrate that our DAO-G significantly surpasses state-of-the-art (SOTA) methods across all metrics. Extensive ablation studies further confirm that DAO-G excels in generating diverse polymorphic structures, and the dataset relaxation and energy guidance provided by DAO-P are essential for enhancing DAO-G's performance. When applied to three real-world superconductors ($\text{CsV}_3\text{Sb}_5$, $ \text{Zr}_{16}\text{Rh}_8\text{O}_4$ and $\text{Zr}_{16}\text{Pd}_8\text{O}_4$) that are known to be challenging to analyze, our foundation models achieve accurate critical temperature predictions and structure generations. For instance, on $\text{CsV}_3\text{Sb}_5$, DAO-G generates a structure close to the experimental one with an RMSE of 0.0085; DAO-P predicts the $T_c$ value with high accuracy (2.26 K vs. the ground-truth value of 2.30 K). In contrast, conventional DFT calculators like Quantum Espresso only successfully derive the structure of the first superconductor within an acceptable time, while the RMSE is nearly 8 times larger, and the computation speed is more than 1000 times slower. These compelling results collectively highlight the potential of our approach for advancing materials science research and development.
Abstract:Targeted protein degradation (TPD) induced by small molecules has emerged as a rapidly evolving modality in drug discovery, targeting proteins traditionally considered "undruggable". Proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs) are the primary small molecules that induce TPD. Both types of molecules form a ternary complex linking an E3 ligase with a target protein, a crucial step for drug discovery. While significant advances have been made in binary structure prediction for proteins and small molecules, ternary structure prediction remains challenging due to obscure interaction mechanisms and insufficient training data. Traditional methods relying on manually assigned rules perform poorly and are computationally demanding due to extensive random sampling. In this work, we introduce DeepTernary, a novel deep learning-based approach that directly predicts ternary structures in an end-to-end manner using an encoder-decoder architecture. DeepTernary leverages an SE(3)-equivariant graph neural network (GNN) with both intra-graph and ternary inter-graph attention mechanisms to capture intricate ternary interactions from our collected high-quality training dataset, TernaryDB. The proposed query-based Pocket Points Decoder extracts the 3D structure of the final binding ternary complex from learned ternary embeddings, demonstrating state-of-the-art accuracy and speed in existing PROTAC benchmarks without prior knowledge from known PROTACs. It also achieves notable accuracy on the more challenging MGD benchmark under the blind docking protocol. Remarkably, our experiments reveal that the buried surface area calculated from predicted structures correlates with experimentally obtained degradation potency-related metrics. Consequently, DeepTernary shows potential in effectively assisting and accelerating the development of TPDs for previously undruggable targets.
Abstract:Graph Transformers (GTs) have demonstrated a strong capability in modeling graph structures by addressing the intrinsic limitations of graph neural networks (GNNs), such as over-smoothing and over-squashing. Recent studies have proposed diverse architectures, enhanced explainability, and practical applications for Graph Transformers. In light of these rapid developments, we conduct a comprehensive review of Graph Transformers, covering aspects such as their architectures, theoretical foundations, and applications within this survey. We categorize the architecture of Graph Transformers according to their strategies for processing structural information, including graph tokenization, positional encoding, structure-aware attention and model ensemble. Furthermore, from the theoretical perspective, we examine the expressivity of Graph Transformers in various discussed architectures and contrast them with other advanced graph learning algorithms to discover the connections. Furthermore, we provide a summary of the practical applications where Graph Transformers have been utilized, such as molecule, protein, language, vision traffic, brain and material data. At the end of this survey, we will discuss the current challenges and prospective directions in Graph Transformers for potential future research.
Abstract:Multi-person interactive motion generation, a critical yet under-explored domain in computer character animation, poses significant challenges such as intricate modeling of inter-human interactions beyond individual motions and generating two motions with huge differences from one text condition. Current research often employs separate module branches for individual motions, leading to a loss of interaction information and increased computational demands. To address these challenges, we propose a novel, unified approach that models multi-person motions and their interactions within a single latent space. Our approach streamlines the process by treating interactive motions as an integrated data point, utilizing a Variational AutoEncoder (VAE) for compression into a unified latent space, and performing a diffusion process within this space, guided by the natural language conditions. Experimental results demonstrate our method's superiority over existing approaches in generation quality, performing text condition in particular when motions have significant asymmetry, and accelerating the generation efficiency while preserving high quality.
Abstract:Collaborative filtering (CF) models have demonstrated remarkable performance in recommender systems, which represent users and items as embedding vectors. Recently, due to the powerful modeling capability of graph neural networks for user-item interaction graphs, graph-based CF models have gained increasing attention. They encode each user/item and its subgraph into a single super vector by combining graph embeddings after each graph convolution. However, each hop of the neighbor in the user-item subgraphs carries a specific semantic meaning. Encoding all subgraph information into single vectors and inferring user-item relations with dot products can weaken the semantic information between user and item subgraphs, thus leaving untapped potential. Exploiting this untapped potential provides insight into improving performance for existing recommendation models. To this end, we propose the Graph Cross-correlated Network for Recommendation (GCR), which serves as a general recommendation paradigm that explicitly considers correlations between user/item subgraphs. GCR first introduces the Plain Graph Representation (PGR) to extract information directly from each hop of neighbors into corresponding PGR vectors. Then, GCR develops Cross-Correlated Aggregation (CCA) to construct possible cross-correlated terms between PGR vectors of user/item subgraphs. Finally, GCR comprehensively incorporates the cross-correlated terms for recommendations. Experimental results show that GCR outperforms state-of-the-art models on both interaction prediction and click-through rate prediction tasks.
Abstract:Equivariant Graph Neural Networks (GNNs) that incorporate E(3) symmetry have achieved significant success in various scientific applications. As one of the most successful models, EGNN leverages a simple scalarization technique to perform equivariant message passing over only Cartesian vectors (i.e., 1st-degree steerable vectors), enjoying greater efficiency and efficacy compared to equivariant GNNs using higher-degree steerable vectors. This success suggests that higher-degree representations might be unnecessary. In this paper, we disprove this hypothesis by exploring the expressivity of equivariant GNNs on symmetric structures, including $k$-fold rotations and regular polyhedra. We theoretically demonstrate that equivariant GNNs will always degenerate to a zero function if the degree of the output representations is fixed to 1 or other specific values. Based on this theoretical insight, we propose HEGNN, a high-degree version of EGNN to increase the expressivity by incorporating high-degree steerable vectors while maintaining EGNN's efficiency through the scalarization trick. Our extensive experiments demonstrate that HEGNN not only aligns with our theoretical analyses on toy datasets consisting of symmetric structures, but also shows substantial improvements on more complicated datasets such as $N$-body and MD17. Our theoretical findings and empirical results potentially open up new possibilities for the research of equivariant GNNs.
Abstract:Molecular Dynamics (MD) simulations are irreplaceable and ubiquitous in fields of materials science, chemistry, pharmacology just to name a few. Conventional MD simulations are plagued by numerical stability as well as long equilibration time issues, which limits broader applications of MD simulations. Recently, a surge of deep learning approaches have been devised for time-coarsened dynamics, which learns the state transition mechanism over much larger time scales to overcome these limitations. However, only a few methods target the underlying Boltzmann distribution by resampling techniques, where proposals are rarely accepted as new states with low efficiency. In this work, we propose a force-guided bridge matching model, FBM, a novel framework that first incorporates physical priors into bridge matching for full-atom time-coarsened dynamics. With the guidance of our well-designed intermediate force field, FBM is feasible to target the Boltzmann-like distribution by direct inference without extra steps. Experiments on small peptides verify our superiority in terms of comprehensive metrics and demonstrate transferability to unseen peptide systems.
Abstract:Continual pre-training (CPT) has been an important approach for adapting language models to specific domains or tasks. To make the CPT approach more traceable, this paper presents a technical report for continually pre-training Llama-3 (8B), which significantly enhances the Chinese language ability and scientific reasoning ability of the backbone model. To enhance the new abilities while retaining the original abilities, we design specific data mixture and curriculum strategies by utilizing existing datasets and synthesizing high-quality datasets. Specifically, we synthesize multidisciplinary scientific question and answer (QA) pairs based on related web pages, and subsequently incorporate these synthetic data to improve the scientific reasoning ability of Llama-3. We refer to the model after CPT as Llama-3-SynE (Synthetic data Enhanced Llama-3). We also present the tuning experiments with a relatively small model -- TinyLlama, and employ the derived findings to train the backbone model. Extensive experiments on a number of evaluation benchmarks show that our approach can largely improve the performance of the backbone models, including both the general abilities (+8.81 on C-Eval and +6.31 on CMMLU) and the scientific reasoning abilities (+12.00 on MATH and +4.13 on SciEval), without hurting the original capacities. Our model, data, and codes are available at https://github.com/RUC-GSAI/Llama-3-SynE.
Abstract:Learning policies for multi-entity systems in 3D environments is far more complicated against single-entity scenarios, due to the exponential expansion of the global state space as the number of entities increases. One potential solution of alleviating the exponential complexity is dividing the global space into independent local views that are invariant to transformations including translations and rotations. To this end, this paper proposes Subequivariant Hierarchical Neural Networks (SHNN) to facilitate multi-entity policy learning. In particular, SHNN first dynamically decouples the global space into local entity-level graphs via task assignment. Second, it leverages subequivariant message passing over the local entity-level graphs to devise local reference frames, remarkably compressing the representation redundancy, particularly in gravity-affected environments. Furthermore, to overcome the limitations of existing benchmarks in capturing the subtleties of multi-entity systems under the Euclidean symmetry, we propose the Multi-entity Benchmark (MEBEN), a new suite of environments tailored for exploring a wide range of multi-entity reinforcement learning. Extensive experiments demonstrate significant advancements of SHNN on the proposed benchmarks compared to existing methods. Comprehensive ablations are conducted to verify the indispensability of task assignment and subequivariance.
Abstract:Large language models (LLMs) have become the foundation of many applications, leveraging their extensive capabilities in processing and understanding natural language. While many open-source LLMs have been released with technical reports, the lack of training details hinders further research and development. This paper presents the development of YuLan, a series of open-source LLMs with $12$ billion parameters. The base model of YuLan is pre-trained on approximately $1.7$T tokens derived from a diverse corpus, including massive English, Chinese, and multilingual texts. We design a three-stage pre-training method to enhance YuLan's overall capabilities. Subsequent phases of training incorporate instruction-tuning and human alignment, employing a substantial volume of high-quality synthesized data. To facilitate the learning of complex and long-tail knowledge, we devise a curriculum-learning framework throughout across these stages, which helps LLMs learn knowledge in an easy-to-hard manner. YuLan's training is finished on Jan, 2024 and has achieved performance on par with state-of-the-art LLMs across various English and Chinese benchmarks. This paper outlines a comprehensive technical roadmap for developing LLMs from scratch. Our model and codes are available at https://github.com/RUC-GSAI/YuLan-Chat.