Abstract:This study introduces a novel method that employs tag annotation coupled with the ChatGPT language model to analyze student learning behaviors and generate personalized feedback. Central to this approach is the conversion of complex student data into an extensive set of tags, which are then decoded through tailored prompts to deliver constructive feedback that encourages rather than discourages students. This methodology focuses on accurately feeding student data into large language models and crafting prompts that enhance the constructive nature of feedback. The effectiveness of this approach was validated through surveys conducted with over 20 mathematics teachers, who confirmed the reliability of the generated reports. This method can be seamlessly integrated into intelligent adaptive learning systems or provided as a tool to significantly reduce the workload of teachers, providing accurate and timely feedback to students. By transforming raw educational data into interpretable tags, this method supports the provision of efficient and timely personalized learning feedback that offers constructive suggestions tailored to individual learner needs.
Abstract:Vision-language models have made significant strides recently, demonstrating superior performance across a range of tasks, e.g. optical character recognition and complex diagram analysis. Building on this trend, we introduce a new vision-language model, POINTS1.5, designed to excel in various real-world applications. POINTS1.5 is an enhancement of POINTS1.0 and incorporates several key innovations: i) We replace the original CLIP vision encoder, which had a fixed image resolution, with a NaViT-style vision encoder that supports native dynamic high resolution. This allows POINTS1.5 to process images of any resolution without needing to split them into tiles. ii) We add bilingual support to POINTS1.5, significantly enhancing its capability in Chinese. Due to the scarcity of open-source Chinese datasets for vision-language models, we collect numerous images from the Internet and annotate them using a combination of manual and automatic methods. iii) We propose a set of rigorous filtering methods for visual instruction tuning datasets. We comprehensively evaluate all these filtering methods, and choose the most effective ones to obtain the final visual instruction tuning set. Thanks to these innovations, POINTS1.5 significantly outperforms POINTS1.0 and demonstrates strong performance across a range of real-world applications. Notably, POINTS1.5-7B is trained on fewer than 4 billion tokens and ranks first on the OpenCompass leaderboard among models with fewer than 10 billion parameters
Abstract:Compared to single-modal knowledge distillation, cross-modal knowledge distillation faces more severe challenges due to domain gaps between modalities. Although various methods have proposed various solutions to overcome these challenges, there is still limited research on how domain gaps affect cross-modal knowledge distillation. This paper provides an in-depth analysis and evaluation of this issue. We first introduce the Non-Target Divergence Hypothesis (NTDH) to reveal the impact of domain gaps on cross-modal knowledge distillation. Our key finding is that domain gaps between modalities lead to distribution differences in non-target classes, and the smaller these differences, the better the performance of cross-modal knowledge distillation. Subsequently, based on Vapnik-Chervonenkis (VC) theory, we derive the upper and lower bounds of the approximation error for cross-modal knowledge distillation, thereby theoretically validating the NTDH. Finally, experiments on five cross-modal datasets further confirm the validity, generalisability, and applicability of the NTDH.
Abstract:Using parts of existing models to rebuild new models, commonly termed as example-based modeling, is a classical methodology in the realm of computer graphics. Previous works mostly focus on shape composition, making them very hard to use for realistic composition of 3D objects captured from real-world scenes. This leads to combining multiple NeRFs into a single 3D scene to achieve seamless appearance blending. However, the current SeamlessNeRF method struggles to achieve interactive editing and harmonious stitching for real-world scenes due to its gradient-based strategy and grid-based representation. To this end, we present an example-based modeling method that combines multiple Gaussian fields in a point-based representation using sample-guided synthesis. Specifically, as for composition, we create a GUI to segment and transform multiple fields in real time, easily obtaining a semantically meaningful composition of models represented by 3D Gaussian Splatting (3DGS). For texture blending, due to the discrete and irregular nature of 3DGS, straightforwardly applying gradient propagation as SeamlssNeRF is not supported. Thus, a novel sampling-based cloning method is proposed to harmonize the blending while preserving the original rich texture and content. Our workflow consists of three steps: 1) real-time segmentation and transformation of a Gaussian model using a well-tailored GUI, 2) KNN analysis to identify boundary points in the intersecting area between the source and target models, and 3) two-phase optimization of the target model using sampling-based cloning and gradient constraints. Extensive experimental results validate that our approach significantly outperforms previous works in terms of realistic synthesis, demonstrating its practicality. More demos are available at https://ingra14m.github.io/gs_stitching_website.
Abstract:The recent advancements in 3D Gaussian splatting (3D-GS) have not only facilitated real-time rendering through modern GPU rasterization pipelines but have also attained state-of-the-art rendering quality. Nevertheless, despite its exceptional rendering quality and performance on standard datasets, 3D-GS frequently encounters difficulties in accurately modeling specular and anisotropic components. This issue stems from the limited ability of spherical harmonics (SH) to represent high-frequency information. To overcome this challenge, we introduce Spec-Gaussian, an approach that utilizes an anisotropic spherical Gaussian (ASG) appearance field instead of SH for modeling the view-dependent appearance of each 3D Gaussian. Additionally, we have developed a coarse-to-fine training strategy to improve learning efficiency and eliminate floaters caused by overfitting in real-world scenes. Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality. Thanks to ASG, we have significantly improved the ability of 3D-GS to model scenes with specular and anisotropic components without increasing the number of 3D Gaussians. This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
Abstract:Large Language Models (LLMs) demonstrate significant capabilities but face challenges such as hallucination, outdated knowledge, and non-transparent, untraceable reasoning processes. Retrieval-Augmented Generation (RAG) has emerged as a promising solution by incorporating knowledge from external databases. This enhances the accuracy and credibility of the models, particularly for knowledge-intensive tasks, and allows for continuous knowledge updates and integration of domain-specific information. RAG synergistically merges LLMs' intrinsic knowledge with the vast, dynamic repositories of external databases. This comprehensive review paper offers a detailed examination of the progression of RAG paradigms, encompassing the Naive RAG, the Advanced RAG, and the Modular RAG. It meticulously scrutinizes the tripartite foundation of RAG frameworks, which includes the retrieval , the generation and the augmentation techniques. The paper highlights the state-of-the-art technologies embedded in each of these critical components, providing a profound understanding of the advancements in RAG systems. Furthermore, this paper introduces the metrics and benchmarks for assessing RAG models, along with the most up-to-date evaluation framework. In conclusion, the paper delineates prospective avenues for research, including the identification of challenges, the expansion of multi-modalities, and the progression of the RAG infrastructure and its ecosystem.
Abstract:Recent advancements enlarge the capabilities of large language models (LLMs) in zero-shot image-to-text generation and understanding by integrating multi-modal inputs. However, such success is typically limited to English scenarios due to the lack of large-scale and high-quality non-English multi-modal resources, making it extremely difficult to establish competitive counterparts in other languages. In this paper, we introduce the Ziya-Visual series, a set of bilingual large-scale vision-language models (LVLMs) designed to incorporate visual semantics into LLM for multi-modal dialogue. Composed of Ziya-Visual-Base and Ziya-Visual-Chat, our models adopt the Querying Transformer from BLIP-2, further exploring the assistance of optimization schemes such as instruction tuning, multi-stage training and low-rank adaptation module for visual-language alignment. In addition, we stimulate the understanding ability of GPT-4 in multi-modal scenarios, translating our gathered English image-text datasets into Chinese and generating instruction-response through the in-context learning method. The experiment results demonstrate that compared to the existing LVLMs, Ziya-Visual achieves competitive performance across a wide range of English-only tasks including zero-shot image-text retrieval, image captioning, and visual question answering. The evaluation leaderboard accessed by GPT-4 also indicates that our models possess satisfactory image-text understanding and generation capabilities in Chinese multi-modal scenario dialogues. Code, demo and models are available at ~\url{https://huggingface.co/IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1}.
Abstract:Implicit neural representation has opened up new possibilities for inverse rendering. However, existing implicit neural inverse rendering methods struggle to handle strongly illuminated scenes with significant shadows and indirect illumination. The existence of shadows and reflections can lead to an inaccurate understanding of scene geometry, making precise factorization difficult. To this end, we present SIRe-IR, an implicit neural inverse rendering approach that uses non-linear mapping and regularized visibility estimation to decompose the scene into environment map, albedo, and roughness. By accurately modeling the indirect radiance field, normal, visibility, and direct light simultaneously, we are able to remove both shadows and indirect illumination in materials without imposing strict constraints on the scene. Even in the presence of intense illumination, our method recovers high-quality albedo and roughness with no shadow interference. SIRe-IR outperforms existing methods in both quantitative and qualitative evaluations.
Abstract:Implicit neural representation has opened up new avenues for dynamic scene reconstruction and rendering. Nonetheless, state-of-the-art methods of dynamic neural rendering rely heavily on these implicit representations, which frequently struggle with accurately capturing the intricate details of objects in the scene. Furthermore, implicit methods struggle to achieve real-time rendering in general dynamic scenes, limiting their use in a wide range of tasks. To address the issues, we propose a deformable 3D Gaussians Splatting method that reconstructs scenes using explicit 3D Gaussians and learns Gaussians in canonical space with a deformation field to model monocular dynamic scenes. We also introduced a smoothing training mechanism with no extra overhead to mitigate the impact of inaccurate poses in real datasets on the smoothness of time interpolation tasks. Through differential gaussian rasterization, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed. Experiments show that our method outperforms existing methods significantly in terms of both rendering quality and speed, making it well-suited for tasks such as novel-view synthesis, time synthesis, and real-time rendering.
Abstract:A variety of Neural Radiance Fields (NeRF) methods have recently achieved remarkable success in high render speed. However, current accelerating methods are specialized and incompatible with various implicit methods, preventing real-time composition over various types of NeRF works. Because NeRF relies on sampling along rays, it is possible to provide general guidance for acceleration. To that end, we propose a general implicit pipeline for composing NeRF objects quickly. Our method enables the casting of dynamic shadows within or between objects using analytical light sources while allowing multiple NeRF objects to be seamlessly placed and rendered together with any arbitrary rigid transformations. Mainly, our work introduces a new surface representation known as Neural Depth Fields (NeDF) that quickly determines the spatial relationship between objects by allowing direct intersection computation between rays and implicit surfaces. It leverages an intersection neural network to query NeRF for acceleration instead of depending on an explicit spatial structure.Our proposed method is the first to enable both the progressive and interactive composition of NeRF objects. Additionally, it also serves as a previewing plugin for a range of existing NeRF works.