Wuhan University
Abstract:Vision-Language Models like CLIP create aligned embedding spaces for text and images, making it possible for anyone to build a visual classifier by simply naming the classes they want to distinguish. However, a model that works well in one domain may fail in another, and non-expert users have no straightforward way to assess whether their chosen VLM will work on their problem. We build on prior work using text-only comparisons to evaluate how well a model works for a given natural language task, and explore approaches that also generate synthetic images relevant to that task to evaluate and refine the prediction of zero-shot accuracy. We show that generated imagery to the baseline text-only scores substantially improves the quality of these predictions. Additionally, it gives a user feedback on the kinds of images that were used to make the assessment. Experiments on standard CLIP benchmark datasets demonstrate that the image-based approach helps users predict, without any labeled examples, whether a VLM will be effective for their application.
Abstract:Time series data from the Intensive Care Unit (ICU) provides critical information for patient monitoring. While recent advancements in applying Large Language Models (LLMs) to time series modeling (TSM) have shown great promise, their effectiveness on the irregular ICU data, characterized by particularly high rates of missing values, remains largely unexplored. This work investigates two key components underlying the success of LLMs for TSM: the time series encoder and the multimodal alignment strategy. To this end, we establish a systematic testbed to evaluate their impact across various state-of-the-art LLM-based methods on benchmark ICU datasets against strong supervised and self-supervised baselines. Results reveal that the encoder design is more critical than the alignment strategy. Encoders that explicitly model irregularity achieve substantial performance gains, yielding an average AUPRC increase of $12.8\%$ over the vanilla Transformer. While less impactful, the alignment strategy is also noteworthy, with the best-performing semantically rich, fusion-based strategy achieving a modest $2.9\%$ improvement over cross-attention. However, LLM-based methods require at least 10$\times$ longer training than the best-performing irregular supervised models, while delivering only comparable performance. They also underperform in data-scarce few-shot learning settings. These findings highlight both the promise and current limitations of LLMs for irregular ICU time series. The code is available at https://github.com/mHealthUnimelb/LLMTS.
Abstract:Vision-Language Models like CLIP create aligned embedding spaces for text and images, making it possible for anyone to build a visual classifier by simply naming the classes they want to distinguish. However, a model that works well in one domain may fail in another, and non-expert users have no straightforward way to assess whether their chosen VLM will work on their problem. We build on prior work using text-only comparisons to evaluate how well a model works for a given natural language task, and explore approaches that also generate synthetic images relevant to that task to evaluate and refine the prediction of zero-shot accuracy. We show that generated imagery to the baseline text-only scores substantially improves the quality of these predictions. Additionally, it gives a user feedback on the kinds of images that were used to make the assessment. Experiments on standard CLIP benchmark datasets demonstrate that the image-based approach helps users predict, without any labeled examples, whether a VLM will be effective for their application.
Abstract:We study positional encodings for multi-view transformers that process tokens from a set of posed input images, and seek a mechanism that encodes patches uniquely, allows SE(3)-invariant attention with multi-frequency similarity, and can be adaptive to the geometry of the underlying scene. We find that prior (absolute or relative) encoding schemes for multi-view attention do not meet the above desiderata, and present RayRoPE to address this gap. RayRoPE represents patch positions based on associated rays but leverages a predicted point along the ray instead of the direction for a geometry-aware encoding. To achieve SE(3) invariance, RayRoPE computes query-frame projective coordinates for computing multi-frequency similarity. Lastly, as the 'predicted' 3D point along a ray may not be precise, RayRoPE presents a mechanism to analytically compute the expected position encoding under uncertainty. We validate RayRoPE on the tasks of novel-view synthesis and stereo depth estimation and show that it consistently improves over alternate position encoding schemes (e.g. 15% relative improvement on LPIPS in CO3D). We also show that RayRoPE can seamlessly incorporate RGB-D input, resulting in even larger gains over alternatives that cannot positionally encode this information.
Abstract:Test time adaptation (TTA) has emerged as a promising solution to adapt pre-trained models to new, unseen data distributions using unlabeled target domain data. However, most TTA methods are designed for independent data, often overlooking the time series data and rarely addressing forecasting tasks. This paper presents AdaNODEs, an innovative source-free TTA method tailored explicitly for time series forecasting. By leveraging Neural Ordinary Differential Equations (NODEs), we propose a novel adaptation framework that accommodates the unique characteristics of distribution shifts in time series data. Moreover, we innovatively propose a new loss function to tackle TTA for forecasting tasks. AdaNODEs only requires updating limited model parameters, showing effectiveness in capturing temporal dependencies while avoiding significant memory usage. Extensive experiments with one- and high-dimensional data demonstrate that AdaNODEs offer relative improvements of 5.88\% and 28.4\% over the SOTA baselines, especially demonstrating robustness across higher severity distribution shifts.
Abstract:Multimodal learning aims to enhance perceptual and decision-making capabilities by integrating information from diverse sources. However, classical deep learning approaches face a critical trade-off between the high accuracy of black-box feature-level fusion and the interpretability of less outstanding decision-level fusion, alongside the challenges of parameter explosion and complexity. This paper discusses the accuracy-interpretablity-complexity dilemma under the quantum computation framework and propose a feature entanglement-based quantum multimodal fusion neural network. The model is composed of three core components: a classical feed-forward module for unimodal processing, an interpretable quantum fusion block, and a quantum convolutional neural network (QCNN) for deep feature extraction. By leveraging the strong expressive power of quantum, we have reduced the complexity of multimodal fusion and post-processing to linear, and the fusion process also possesses the interpretability of decision-level fusion. The simulation results demonstrate that our model achieves classification accuracy comparable to classical networks with dozens of times of parameters, exhibiting notable stability and performance across multimodal image datasets.
Abstract:End-to-end (E2E) models in autonomous driving aim to directly map sensor inputs to control commands, but their ability to generalize to novel and complex scenarios remains a key challenge. The common practice of fully fine-tuning the vision encoder on driving datasets potentially limits its generalization by causing the model to specialize too heavily in the training data. This work challenges the necessity of this training paradigm. We propose FROST-Drive, a novel E2E architecture designed to preserve and leverage the powerful generalization capabilities of a pretrained vision encoder from a Vision-Language Model (VLM). By keeping the encoder's weights frozen, our approach directly transfers the rich, generalized world knowledge from the VLM to the driving task. Our model architecture combines this frozen encoder with a transformer-based adapter for multimodal fusion and a GRU-based decoder for smooth waypoint generation. Furthermore, we introduce a custom loss function designed to directly optimize for Rater Feedback Score (RFS), a metric that prioritizes robust trajectory planning. We conduct extensive experiments on Waymo Open E2E Dataset, a large-scale datasets deliberately curated to capture the long-tail scenarios, demonstrating that our frozen-encoder approach significantly outperforms models that employ full fine-tuning. Our results provide substantial evidence that preserving the broad knowledge of a capable VLM is a more effective strategy for achieving robust, generalizable driving performance than intensive domain-specific adaptation. This offers a new pathway for developing vision-based models that can better handle the complexities of real-world application domains.
Abstract:The development of Multimodal Virtual Agents has made significant progress through the integration of Multimodal Large Language Models. However, mainstream training paradigms face key challenges: Behavior Cloning is simple and effective through imitation but suffers from low behavioral diversity, while Reinforcement Learning is capable of discovering novel strategies through exploration but heavily relies on manually designed reward functions. To address the conflict between these two methods, we present CORE, a Code-based Inverse Self-Training Framework with Graph Expansion that bridges imitation and exploration, offering a novel training framework that promotes behavioral diversity while eliminating the reliance on manually reward design. Specifically, we introduce Semantic Code Abstraction to automatically infers reward functions from expert demonstrations without manual design. The inferred reward function, referred to as the Label Function, is executable code that verifies one key step within a task. Building on this, we propose Strategy Graph Expansion to enhance in-domain behavioral diversity, which constructs a multi-path graph called Strategy Graph that captures diverse valid solutions beyond expert demonstrations. Furthermore, we introduce Trajectory-Guided Extrapolation, which enriches out-of-domain behavioral diversity by utilizing both successful and failed trajectories to expand the task space. Experiments on Web and Android platforms demonstrate that CORE significantly improves both overall performance and generalization, highlighting its potential as a robust and generalizable training paradigm for building powerful virtual agents.
Abstract:This work introduces Text-based Aerial-Ground Person Retrieval (TAG-PR), which aims to retrieve person images from heterogeneous aerial and ground views with textual descriptions. Unlike traditional Text-based Person Retrieval (T-PR), which focuses solely on ground-view images, TAG-PR introduces greater practical significance and presents unique challenges due to the large viewpoint discrepancy across images. To support this task, we contribute: (1) TAG-PEDES dataset, constructed from public benchmarks with automatically generated textual descriptions, enhanced by a diversified text generation paradigm to ensure robustness under view heterogeneity; and (2) TAG-CLIP, a novel retrieval framework that addresses view heterogeneity through a hierarchically-routed mixture of experts module to learn view-specific and view-agnostic features and a viewpoint decoupling strategy to decouple view-specific features for better cross-modal alignment. We evaluate the effectiveness of TAG-CLIP on both the proposed TAG-PEDES dataset and existing T-PR benchmarks. The dataset and code are available at https://github.com/Flame-Chasers/TAG-PR.




Abstract:In open-world environments, human-object interactions (HOIs) evolve continuously, challenging conventional closed-world HOI detection models. Inspired by humans' ability to progressively acquire knowledge, we explore incremental HOI detection (IHOID) to develop agents capable of discerning human-object relations in such dynamic environments. This setup confronts not only the common issue of catastrophic forgetting in incremental learning but also distinct challenges posed by interaction drift and detecting zero-shot HOI combinations with sequentially arriving data. Therefore, we propose a novel exemplar-free incremental relation distillation (IRD) framework. IRD decouples the learning of objects and relations, and introduces two unique distillation losses for learning invariant relation features across different HOI combinations that share the same relation. Extensive experiments on HICO-DET and V-COCO datasets demonstrate the superiority of our method over state-of-the-art baselines in mitigating forgetting, strengthening robustness against interaction drift, and generalization on zero-shot HOIs. Code is available at \href{https://github.com/weiyana/ContinualHOI}{this HTTP URL}