Abstract:We present JanusFlow, a powerful framework that unifies image understanding and generation in a single model. JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.
Abstract:In this paper, we introduce Janus, an autoregressive framework that unifies multimodal understanding and generation. Prior research often relies on a single visual encoder for both tasks, such as Chameleon. However, due to the differing levels of information granularity required by multimodal understanding and generation, this approach can lead to suboptimal performance, particularly in multimodal understanding. To address this issue, we decouple visual encoding into separate pathways, while still leveraging a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder's roles in understanding and generation, but also enhances the framework's flexibility. For instance, both the multimodal understanding and generation components can independently select their most suitable encoding methods. Experiments show that Janus surpasses previous unified model and matches or exceeds the performance of task-specific models. The simplicity, high flexibility, and effectiveness of Janus make it a strong candidate for next-generation unified multimodal models.
Abstract:Pre-trained Language models (PLMs) have been acknowledged to contain harmful information, such as social biases, which may cause negative social impacts or even bring catastrophic results in application. Previous works on this problem mainly focused on using black-box methods such as probing to detect and quantify social biases in PLMs by observing model outputs. As a result, previous debiasing methods mainly finetune or even pre-train language models on newly constructed anti-stereotypical datasets, which are high-cost. In this work, we try to unveil the mystery of social bias inside language models by introducing the concept of {\sc Social Bias Neurons}. Specifically, we propose {\sc Integrated Gap Gradients (IG$^2$)} to accurately pinpoint units (i.e., neurons) in a language model that can be attributed to undesirable behavior, such as social bias. By formalizing undesirable behavior as a distributional property of language, we employ sentiment-bearing prompts to elicit classes of sensitive words (demographics) correlated with such sentiments. Our IG$^2$ thus attributes the uneven distribution for different demographics to specific Social Bias Neurons, which track the trail of unwanted behavior inside PLM units to achieve interoperability. Moreover, derived from our interpretable technique, {\sc Bias Neuron Suppression (BNS)} is further proposed to mitigate social biases. By studying BERT, RoBERTa, and their attributable differences from debiased FairBERTa, IG$^2$ allows us to locate and suppress identified neurons, and further mitigate undesired behaviors. As measured by prior metrics from StereoSet, our model achieves a higher degree of fairness while maintaining language modeling ability with low cost.
Abstract:Long text understanding is important yet challenging for natural language processing. A long article or document usually contains many redundant words that are not pertinent to its gist and sometimes can be regarded as noise. With recent advances of abstractive summarization, we propose our \emph{Gist Detector} to leverage the gist detection ability of a summarization model and integrate the extracted gist into downstream models to enhance their long text understanding ability. Specifically, Gist Detector first learns the gist detection knowledge distilled from a summarization model, and then produces gist-aware representations to augment downstream models. We evaluate our method on three different tasks: long document classification, distantly supervised open-domain question answering, and non-parallel text style transfer. The experimental results show that our method can significantly improve the performance of baseline models on all tasks.
Abstract:Text-to-texture synthesis has become a new frontier in 3D content creation thanks to the recent advances in text-to-image models. Existing methods primarily adopt a combination of pretrained depth-aware diffusion and inpainting models, yet they exhibit shortcomings such as 3D inconsistency and limited controllability. To address these challenges, we introduce InteX, a novel framework for interactive text-to-texture synthesis. 1) InteX includes a user-friendly interface that facilitates interaction and control throughout the synthesis process, enabling region-specific repainting and precise texture editing. 2) Additionally, we develop a unified depth-aware inpainting model that integrates depth information with inpainting cues, effectively mitigating 3D inconsistencies and improving generation speed. Through extensive experiments, our framework has proven to be both practical and effective in text-to-texture synthesis, paving the way for high-quality 3D content creation.
Abstract:3D content creation has achieved significant progress in terms of both quality and speed. Although current feed-forward models can produce 3D objects in seconds, their resolution is constrained by the intensive computation required during training. In this paper, we introduce Large Multi-View Gaussian Model (LGM), a novel framework designed to generate high-resolution 3D models from text prompts or single-view images. Our key insights are two-fold: 1) 3D Representation: We propose multi-view Gaussian features as an efficient yet powerful representation, which can then be fused together for differentiable rendering. 2) 3D Backbone: We present an asymmetric U-Net as a high-throughput backbone operating on multi-view images, which can be produced from text or single-view image input by leveraging multi-view diffusion models. Extensive experiments demonstrate the high fidelity and efficiency of our approach. Notably, we maintain the fast speed to generate 3D objects within 5 seconds while boosting the training resolution to 512, thereby achieving high-resolution 3D content generation.
Abstract:Content Warning: This work contains examples that potentially implicate stereotypes, associations, and other harms that could be offensive to individuals in certain social groups.} Large pre-trained language models are acknowledged to carry social biases towards different demographics, which can further amplify existing stereotypes in our society and cause even more harm. Text-to-SQL is an important task, models of which are mainly adopted by administrative industries, where unfair decisions may lead to catastrophic consequences. However, existing Text-to-SQL models are trained on clean, neutral datasets, such as Spider and WikiSQL. This, to some extent, cover up social bias in models under ideal conditions, which nevertheless may emerge in real application scenarios. In this work, we aim to uncover and categorize social biases in Text-to-SQL models. We summarize the categories of social biases that may occur in structured data for Text-to-SQL models. We build test benchmarks and reveal that models with similar task accuracy can contain social biases at very different rates. We show how to take advantage of our methodology to uncover and assess social biases in the downstream Text-to-SQL task. We will release our code and data.
Abstract:This paper investigates the potential of enhancing Neural Radiance Fields (NeRF) with semantics to expand their applications. Although NeRF has been proven useful in real-world applications like VR and digital creation, the lack of semantics hinders interaction with objects in complex scenes. We propose to imitate the backbone feature of off-the-shelf perception models to achieve zero-shot semantic segmentation with NeRF. Our framework reformulates the segmentation process by directly rendering semantic features and only applying the decoder from perception models. This eliminates the need for expensive backbones and benefits 3D consistency. Furthermore, we can project the learned semantics onto extracted mesh surfaces for real-time interaction. With the state-of-the-art Segment Anything Model (SAM), our framework accelerates segmentation by 16 times with comparable mask quality. The experimental results demonstrate the efficacy and computational advantages of our approach. Project page: \url{https://me.kiui.moe/san/}.
Abstract:Large language models (LLMs) have notably accelerated progress towards artificial general intelligence (AGI), with their impressive zero-shot capacity for user-tailored tasks, endowing them with immense potential across a range of applications. However, in the field of computer vision, despite the availability of numerous powerful vision foundation models (VFMs), they are still restricted to tasks in a pre-defined form, struggling to match the open-ended task capabilities of LLMs. In this work, we present an LLM-based framework for vision-centric tasks, termed VisionLLM. This framework provides a unified perspective for vision and language tasks by treating images as a foreign language and aligning vision-centric tasks with language tasks that can be flexibly defined and managed using language instructions. An LLM-based decoder can then make appropriate predictions based on these instructions for open-ended tasks. Extensive experiments show that the proposed VisionLLM can achieve different levels of task customization through language instructions, from fine-grained object-level to coarse-grained task-level customization, all with good results. It's noteworthy that, with a generalist LLM-based framework, our model can achieve over 60\% mAP on COCO, on par with detection-specific models. We hope this model can set a new baseline for generalist vision and language models. The demo shall be released based on https://github.com/OpenGVLab/InternGPT. The code shall be released at https://github.com/OpenGVLab/VisionLLM.
Abstract:With the popularity of automatic code generation tools, such as Copilot, the study of the potential hazards of these tools is gaining importance. In this work, we explore the social bias problem in pre-trained code generation models. We propose a new paradigm to construct code prompts and successfully uncover social biases in code generation models. To quantify the severity of social biases in generated code, we develop a dataset along with three metrics to evaluate the overall social bias and fine-grained unfairness across different demographics. Experimental results on three pre-trained code generation models (Codex, InCoder, and CodeGen) with varying sizes, reveal severe social biases. Moreover, we conduct analysis to provide useful insights for further choice of code generation models with low social bias. (This work contains examples that potentially implicate stereotypes, associations, and other harms that could be offensive to individuals in certain social groups.)