Abstract:The emergence of Vision-Language Models (VLMs) is a significant advancement in integrating computer vision with Large Language Models (LLMs) to enhance multi-modal machine learning capabilities. However, this progress has also made VLMs vulnerable to sophisticated adversarial attacks, raising concerns about their reliability. The objective of this paper is to assess the resilience of VLMs against jailbreak attacks that can compromise model safety compliance and result in harmful outputs. To evaluate a VLM's ability to maintain its robustness against adversarial input perturbations, we propose a novel metric called the \textbf{Retention Score}. Retention Score is a multi-modal evaluation metric that includes Retention-I and Retention-T scores for quantifying jailbreak risks in visual and textual components of VLMs. Our process involves generating synthetic image-text pairs using a conditional diffusion model. These pairs are then predicted for toxicity score by a VLM alongside a toxicity judgment classifier. By calculating the margin in toxicity scores, we can quantify the robustness of the VLM in an attack-agnostic manner. Our work has four main contributions. First, we prove that Retention Score can serve as a certified robustness metric. Second, we demonstrate that most VLMs with visual components are less robust against jailbreak attacks than the corresponding plain VLMs. Additionally, we evaluate black-box VLM APIs and find that the security settings in Google Gemini significantly affect the score and robustness. Moreover, the robustness of GPT4V is similar to the medium settings of Gemini. Finally, our approach offers a time-efficient alternative to existing adversarial attack methods and provides consistent model robustness rankings when evaluated on VLMs including MiniGPT-4, InstructBLIP, and LLaVA.
Abstract:Simulation offers unique values for both enumeration and extrapolation purposes, and is becoming increasingly important for managing the massive machine learning (ML) clusters and large-scale distributed training jobs. In this paper, we build Echo to tackle three key challenges in large-scale training simulation: (1) tracing the runtime training workloads at each device in an ex-situ fashion so we can use a single device to obtain the actual execution graphs of 1K-GPU training, (2) accurately estimating the collective communication without high overheads of discrete-event based network simulation, and (3) accounting for the interference-induced computation slowdown from overlapping communication and computation kernels on the same device. Echo delivers on average 8% error in training step -- roughly 3x lower than state-of-the-art simulators -- for GPT-175B on a 96-GPU H800 cluster with 3D parallelism on Megatron-LM under 2 minutes.
Abstract:Large Language Models (LLMs) are increasingly used to control robotic systems such as drones, but their risks of causing physical threats and harm in real-world applications remain unexplored. Our study addresses the critical gap in evaluating LLM physical safety by developing a comprehensive benchmark for drone control. We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations. Our evaluation of mainstream LLMs reveals an undesirable trade-off between utility and safety, with models that excel in code generation often performing poorly in crucial safety aspects. Furthermore, while incorporating advanced prompt engineering techniques such as In-Context Learning and Chain-of-Thought can improve safety, these methods still struggle to identify unintentional attacks. In addition, larger models demonstrate better safety capabilities, particularly in refusing dangerous commands. Our findings and benchmark can facilitate the design and evaluation of physical safety for LLMs. The project page is available at huggingface.co/spaces/TrustSafeAI/LLM-physical-safety.
Abstract:Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs). While much of the current research in this field focuses on performance optimization, particularly in terms of accuracy and efficiency, the trustworthiness of RAG systems remains an area still under exploration. From a positive perspective, RAG systems are promising to enhance LLMs by providing them with useful and up-to-date knowledge from vast external databases, thereby mitigating the long-standing problem of hallucination. While from a negative perspective, RAG systems are at the risk of generating undesirable contents if the retrieved information is either inappropriate or poorly utilized. To address these concerns, we propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy. Within this framework, we thoroughly review the existing literature on each dimension. Additionally, we create the evaluation benchmark regarding the six dimensions and conduct comprehensive evaluations for a variety of proprietary and open-source models. Finally, we identify the potential challenges for future research based on our investigation results. Through this work, we aim to lay a structured foundation for future investigations and provide practical insights for enhancing the trustworthiness of RAG systems in real-world applications.
Abstract:Adapting pre-trained models to new tasks can exhibit varying effectiveness across datasets. Visual prompting, a state-of-the-art parameter-efficient transfer learning method, can significantly improve the performance of out-of-distribution tasks. On the other hand, linear probing, a standard transfer learning method, can sometimes become the best approach. We propose a log-likelihood ratio (LLR) approach to analyze the comparative benefits of visual prompting and linear probing. By employing the LLR score alongside resource-efficient visual prompts approximations, our cost-effective measure attains up to a 100-fold reduction in run time compared to full training, while achieving prediction accuracies up to 91%. The source code is available at https://github.com/IBM/VP-LLR.
Abstract:Pre-trained Language models (PLMs) have been acknowledged to contain harmful information, such as social biases, which may cause negative social impacts or even bring catastrophic results in application. Previous works on this problem mainly focused on using black-box methods such as probing to detect and quantify social biases in PLMs by observing model outputs. As a result, previous debiasing methods mainly finetune or even pre-train language models on newly constructed anti-stereotypical datasets, which are high-cost. In this work, we try to unveil the mystery of social bias inside language models by introducing the concept of {\sc Social Bias Neurons}. Specifically, we propose {\sc Integrated Gap Gradients (IG$^2$)} to accurately pinpoint units (i.e., neurons) in a language model that can be attributed to undesirable behavior, such as social bias. By formalizing undesirable behavior as a distributional property of language, we employ sentiment-bearing prompts to elicit classes of sensitive words (demographics) correlated with such sentiments. Our IG$^2$ thus attributes the uneven distribution for different demographics to specific Social Bias Neurons, which track the trail of unwanted behavior inside PLM units to achieve interoperability. Moreover, derived from our interpretable technique, {\sc Bias Neuron Suppression (BNS)} is further proposed to mitigate social biases. By studying BERT, RoBERTa, and their attributable differences from debiased FairBERTa, IG$^2$ allows us to locate and suppress identified neurons, and further mitigate undesired behaviors. As measured by prior metrics from StereoSet, our model achieves a higher degree of fairness while maintaining language modeling ability with low cost.
Abstract:The rapid advances in generative AI models have empowered the creation of highly realistic images with arbitrary content, raising concerns about potential misuse and harm, such as Deepfakes. Current research focuses on training detectors using large datasets of generated images. However, these training-based solutions are often computationally expensive and show limited generalization to unseen generated images. In this paper, we propose a training-free method to distinguish between real and AI-generated images. We first observe that real images are more robust to tiny noise perturbations than AI-generated images in the representation space of vision foundation models. Based on this observation, we propose RIGID, a training-free and model-agnostic method for robust AI-generated image detection. RIGID is a simple yet effective approach that identifies whether an image is AI-generated by comparing the representation similarity between the original and the noise-perturbed counterpart. Our evaluation on a diverse set of AI-generated images and benchmarks shows that RIGID significantly outperforms existing trainingbased and training-free detectors. In particular, the average performance of RIGID exceeds the current best training-free method by more than 25%. Importantly, RIGID exhibits strong generalization across different image generation methods and robustness to image corruptions.
Abstract:Numerous studies have revealed that deep learning-based medical image classification models may exhibit bias towards specific demographic attributes, such as race, gender, and age. Existing bias mitigation methods often achieve high level of fairness at the cost of significant accuracy degradation. In response to this challenge, we propose an innovative and adaptable Soft Nearest Neighbor Loss-based channel pruning framework, which achieves fairness through channel pruning. Traditionally, channel pruning is utilized to accelerate neural network inference. However, our work demonstrates that pruning can also be a potent tool for achieving fairness. Our key insight is that different channels in a layer contribute differently to the accuracy of different groups. By selectively pruning critical channels that lead to the accuracy difference between the privileged and unprivileged groups, we can effectively improve fairness without sacrificing accuracy significantly. Experiments conducted on two skin lesion diagnosis datasets across multiple sensitive attributes validate the effectiveness of our method in achieving state-of-the-art trade-off between accuracy and fairness. Our code is available at https://github.com/Kqp1227/Sensitive-Channel-Pruning.
Abstract:Due to cost benefits, supply chains of integrated circuits (ICs) are largely outsourced nowadays. However, passing ICs through various third-party providers gives rise to many security threats, like piracy of IC intellectual property or insertion of hardware Trojans, i.e., malicious circuit modifications. In this work, we proactively and systematically protect the physical layouts of ICs against post-design insertion of Trojans. Toward that end, we propose TroLLoc, a novel scheme for IC security closure that employs, for the first time, logic locking and layout hardening in unison. TroLLoc is fully integrated into a commercial-grade design flow, and TroLLoc is shown to be effective, efficient, and robust. Our work provides in-depth layout and security analysis considering the challenging benchmarks of the ISPD'22/23 contests for security closure. We show that TroLLoc successfully renders layouts resilient, with reasonable overheads, against (i) general prospects for Trojan insertion as in the ISPD'22 contest, (ii) actual Trojan insertion as in the ISPD'23 contest, and (iii) potential second-order attacks where adversaries would first (i.e., before Trojan insertion) try to bypass the locking defense, e.g., using advanced machine learning attacks. Finally, we release all our artifacts for independent verification [2].
Abstract:Protein classification tasks are essential in drug discovery. Real-world protein structures are dynamic, which will determine the properties of proteins. However, the existing machine learning methods, like ProNet (Wang et al., 2022a), only access limited conformational characteristics and protein side-chain features, leading to impractical protein structure and inaccuracy of protein classes in their predictions. In this paper, we propose novel semantic data augmentation methods, Novel Augmentation of New Node Attributes (NaNa), and Molecular Interactions and Geometric Upgrading (MiGu) to incorporate backbone chemical and side-chain biophysical information into protein classification tasks and a co-embedding residual learning framework. Specifically, we leverage molecular biophysical, secondary structure, chemical bonds, and ionic features of proteins to facilitate protein classification tasks. Furthermore, our semantic augmentation methods and the co-embedding residual learning framework can improve the performance of GIN (Xu et al., 2019) on EC and Fold datasets (Bairoch, 2000; Andreeva et al., 2007) by 16.41% and 11.33% respectively. Our code is available at https://github.com/r08b46009/Code_for_MIGU_NANA/tree/main.