Abstract:Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs). While much of the current research in this field focuses on performance optimization, particularly in terms of accuracy and efficiency, the trustworthiness of RAG systems remains an area still under exploration. From a positive perspective, RAG systems are promising to enhance LLMs by providing them with useful and up-to-date knowledge from vast external databases, thereby mitigating the long-standing problem of hallucination. While from a negative perspective, RAG systems are at the risk of generating undesirable contents if the retrieved information is either inappropriate or poorly utilized. To address these concerns, we propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy. Within this framework, we thoroughly review the existing literature on each dimension. Additionally, we create the evaluation benchmark regarding the six dimensions and conduct comprehensive evaluations for a variety of proprietary and open-source models. Finally, we identify the potential challenges for future research based on our investigation results. Through this work, we aim to lay a structured foundation for future investigations and provide practical insights for enhancing the trustworthiness of RAG systems in real-world applications.
Abstract:With the advent of Large Language Models (LLMs), the potential of Retrieval Augmented Generation (RAG) techniques have garnered considerable research attention. Numerous novel algorithms and models have been introduced to enhance various aspects of RAG systems. However, the absence of a standardized framework for implementation, coupled with the inherently intricate RAG process, makes it challenging and time-consuming for researchers to compare and evaluate these approaches in a consistent environment. Existing RAG toolkits like LangChain and LlamaIndex, while available, are often heavy and unwieldy, failing to meet the personalized needs of researchers. In response to this challenge, we propose FlashRAG, an efficient and modular open-source toolkit designed to assist researchers in reproducing existing RAG methods and in developing their own RAG algorithms within a unified framework. Our toolkit implements 12 advanced RAG methods and has gathered and organized 32 benchmark datasets. Our toolkit has various features, including customizable modular framework, rich collection of pre-implemented RAG works, comprehensive datasets, efficient auxiliary pre-processing scripts, and extensive and standard evaluation metrics. Our toolkit and resources are available at https://github.com/RUC-NLPIR/FlashRAG.
Abstract:Information Retrieval (IR) systems are crucial tools for users to access information, widely applied in scenarios like search engines, question answering, and recommendation systems. Traditional IR methods, based on similarity matching to return ranked lists of documents, have been reliable means of information acquisition, dominating the IR field for years. With the advancement of pre-trained language models, generative information retrieval (GenIR) has emerged as a novel paradigm, gaining increasing attention in recent years. Currently, research in GenIR can be categorized into two aspects: generative document retrieval (GR) and reliable response generation. GR leverages the generative model's parameters for memorizing documents, enabling retrieval by directly generating relevant document identifiers without explicit indexing. Reliable response generation, on the other hand, employs language models to directly generate the information users seek, breaking the limitations of traditional IR in terms of document granularity and relevance matching, offering more flexibility, efficiency, and creativity, thus better meeting practical needs. This paper aims to systematically review the latest research progress in GenIR. We will summarize the advancements in GR regarding model training, document identifier, incremental learning, downstream tasks adaptation, multi-modal GR and generative recommendation, as well as progress in reliable response generation in aspects of internal knowledge memorization, external knowledge augmentation, generating response with citations and personal information assistant. We also review the evaluation, challenges and future prospects in GenIR systems. This review aims to offer a comprehensive reference for researchers in the GenIR field, encouraging further development in this area.
Abstract:Retrieval-augmented large language models (LLMs) have demonstrated efficacy in knowledge-intensive tasks such as open-domain QA, addressing inherent challenges in knowledge update and factual inadequacy. However, inconsistencies between retrieval knowledge and the necessary knowledge for LLMs, leading to a decline in LLM's answer quality. This paper introduces BIDER, an approach that refines retrieval documents into Key Supporting Evidence (KSE) through knowledge synthesis, supervised fine-tuning (SFT), and preference alignment. We train BIDER by learning from crafting KSE, while maximizing its output to align with LLM's information acquisition preferences through reinforcement learning. Evaluations across five datasets show BIDER boosts LLMs' answer quality by 7% while reducing input content length in retrieval documents by 80%, outperforming existing methods. The proposed KSE simulation effectively equips LLMs with essential information for accurate question answering.
Abstract:Retrieval-augmented generation have become central in natural language processing due to their efficacy in generating factual content. While traditional methods employ single-time retrieval, more recent approaches have shifted towards multi-time retrieval for multi-hop reasoning tasks. However, these strategies are bound by predefined reasoning steps, potentially leading to inaccuracies in response generation. This paper introduces MetaRAG, an approach that combines the retrieval-augmented generation process with metacognition. Drawing from cognitive psychology, metacognition allows an entity to self-reflect and critically evaluate its cognitive processes. By integrating this, MetaRAG enables the model to monitor, evaluate, and plan its response strategies, enhancing its introspective reasoning abilities. Through a three-step metacognitive regulation pipeline, the model can identify inadequacies in initial cognitive responses and fixes them. Empirical evaluations show that MetaRAG significantly outperforms existing methods.
Abstract:Traditional search engines usually provide identical search results for all users, overlooking individual preferences. To counter this limitation, personalized search has been developed to re-rank results based on user preferences derived from query logs. Deep learning-based personalized search methods have shown promise, but they rely heavily on abundant training data, making them susceptible to data sparsity challenges. This paper proposes a Cognitive Personalized Search (CoPS) model, which integrates Large Language Models (LLMs) with a cognitive memory mechanism inspired by human cognition. CoPS employs LLMs to enhance user modeling and user search experience. The cognitive memory mechanism comprises sensory memory for quick sensory responses, working memory for sophisticated cognitive responses, and long-term memory for storing historical interactions. CoPS handles new queries using a three-step approach: identifying re-finding behaviors, constructing user profiles with relevant historical information, and ranking documents based on personalized query intent. Experiments show that CoPS outperforms baseline models in zero-shot scenarios.
Abstract:Although Large Language Models (LLMs) have demonstrated extraordinary capabilities in many domains, they still have a tendency to hallucinate and generate fictitious responses to user requests. This problem can be alleviated by augmenting LLMs with information retrieval (IR) systems (also known as retrieval-augmented LLMs). Applying this strategy, LLMs can generate more factual texts in response to user input according to the relevant content retrieved by IR systems from external corpora as references. In addition, by incorporating external knowledge, retrieval-augmented LLMs can answer in-domain questions that cannot be answered by solely relying on the world knowledge stored in parameters. To support research in this area and facilitate the development of retrieval-augmented LLM systems, we develop RETA-LLM, a {RET}reival-{A}ugmented LLM toolkit. In RETA-LLM, we create a complete pipeline to help researchers and users build their customized in-domain LLM-based systems. Compared with previous retrieval-augmented LLM systems, RETA-LLM provides more plug-and-play modules to support better interaction between IR systems and LLMs, including {request rewriting, document retrieval, passage extraction, answer generation, and fact checking} modules. Our toolkit is publicly available at https://github.com/RUC-GSAI/YuLan-IR/tree/main/RETA-LLM.