Abstract:Large language models (LLMs) exhibit remarkable generative capabilities but often suffer from hallucinations. Retrieval-augmented generation (RAG) offers an effective solution by incorporating external knowledge, but existing methods still face several limitations: additional deployment costs of separate retrievers, redundant input tokens from retrieved text chunks, and the lack of joint optimization of retrieval and generation. To address these issues, we propose \textbf{RetroLLM}, a unified framework that integrates retrieval and generation into a single, cohesive process, enabling LLMs to directly generate fine-grained evidence from the corpus with constrained decoding. Moreover, to mitigate false pruning in the process of constrained evidence generation, we introduce (1) hierarchical FM-Index constraints, which generate corpus-constrained clues to identify a subset of relevant documents before evidence generation, reducing irrelevant decoding space; and (2) a forward-looking constrained decoding strategy, which considers the relevance of future sequences to improve evidence accuracy. Extensive experiments on five open-domain QA datasets demonstrate RetroLLM's superior performance across both in-domain and out-of-domain tasks. The code is available at \url{https://github.com/sunnynexus/RetroLLM}.
Abstract:Hierarchical text classification (HTC) is a special sub-task of multi-label classification (MLC) whose taxonomy is constructed as a tree and each sample is assigned with at least one path in the tree. Latest HTC models contain three modules: a text encoder, a structure encoder and a multi-label classification head. Specially, the structure encoder is designed to encode the hierarchy of taxonomy. However, the structure encoder has scale problem. As the taxonomy size increases, the learnable parameters of recent HTC works grow rapidly. Recursive regularization is another widely-used method to introduce hierarchical information but it has collapse problem and generally relaxed by assigning with a small weight (ie. 1e-6). In this paper, we propose a Hierarchy-aware Light Global model with Hierarchical local conTrastive learning (HiLight), a lightweight and efficient global model only consisting of a text encoder and a multi-label classification head. We propose a new learning task to introduce the hierarchical information, called Hierarchical Local Contrastive Learning (HiLCL). Extensive experiments are conducted on two benchmark datasets to demonstrate the effectiveness of our model.
Abstract:Lexicon-based retrieval has gained siginificant popularity in text retrieval due to its efficient and robust performance. To further enhance performance of lexicon-based retrieval, researchers have been diligently incorporating state-of-the-art methodologies like Neural retrieval and text-level contrastive learning approaches. Nonetheless, despite the promising outcomes, current lexicon-based retrieval methods have received limited attention in exploring the potential benefits of feature context representations and term-level knowledge guidance. In this paper, we introduce an innovative method by introducing FEature Context and TErm-level Knowledge modules(FecTek). To effectively enrich the feature context representations of term weight, the Feature Context Module (FCM) is introduced, which leverages the power of BERT's representation to determine dynamic weights for each element in the embedding. Additionally, we develop a term-level knowledge guidance module (TKGM) for effectively utilizing term-level knowledge to intelligently guide the modeling process of term weight. Evaluation of the proposed method on MS Marco benchmark demonstrates its superiority over the previous state-of-the-art approaches.
Abstract:Large-scale pre-trained models (PTMs) have been widely used in document-oriented NLP tasks, such as question answering. However, the encoding-task coupling requirement results in the repeated encoding of the same documents for different tasks and queries, which is highly computationally inefficient. To this end, we target to decouple document encoding from downstream tasks, and propose to represent each document as a plug-and-play document module, i.e., a document plugin, for PTMs (PlugD). By inserting document plugins into the backbone PTM for downstream tasks, we can encode a document one time to handle multiple tasks, which is more efficient than conventional encoding-task coupling methods that simultaneously encode documents and input queries using task-specific encoders. Extensive experiments on 8 datasets of 4 typical NLP tasks show that PlugD enables models to encode documents once and for all across different scenarios. Especially, PlugD can save $69\%$ computational costs while achieving comparable performance to state-of-the-art encoding-task coupling methods. Additionally, we show that PlugD can serve as an effective post-processing way to inject knowledge into task-specific models, improving model performance without any additional model training.
Abstract:Few-shot dense retrieval (DR) aims to effectively generalize to novel search scenarios by learning a few samples. Despite its importance, there is little study on specialized datasets and standardized evaluation protocols. As a result, current methods often resort to random sampling from supervised datasets to create "few-data" setups and employ inconsistent training strategies during evaluations, which poses a challenge in accurately comparing recent progress. In this paper, we propose a customized FewDR dataset and a unified evaluation benchmark. Specifically, FewDR employs class-wise sampling to establish a standardized "few-shot" setting with finely-defined classes, reducing variability in multiple sampling rounds. Moreover, the dataset is disjointed into base and novel classes, allowing DR models to be continuously trained on ample data from base classes and a few samples in novel classes. This benchmark eliminates the risk of novel class leakage, providing a reliable estimation of the DR model's few-shot ability. Our extensive empirical results reveal that current state-of-the-art DR models still face challenges in the standard few-shot scene. Our code and data will be open-sourced at https://github.com/OpenMatch/ANCE-Tele.
Abstract:Fashion vision-language pre-training models have shown efficacy for a wide range of downstream tasks. However, general vision-language pre-training models pay less attention to fine-grained domain features, while these features are important in distinguishing the specific domain tasks from general tasks. We propose a method for fine-grained fashion vision-language pre-training based on fashion Symbols and Attributes Prompt (FashionSAP) to model fine-grained multi-modalities fashion attributes and characteristics. Firstly, we propose the fashion symbols, a novel abstract fashion concept layer, to represent different fashion items and to generalize various kinds of fine-grained fashion features, making modelling fine-grained attributes more effective. Secondly, the attributes prompt method is proposed to make the model learn specific attributes of fashion items explicitly. We design proper prompt templates according to the format of fashion data. Comprehensive experiments are conducted on two public fashion benchmarks, i.e., FashionGen and FashionIQ, and FashionSAP gets SOTA performances for four popular fashion tasks. The ablation study also shows the proposed abstract fashion symbols, and the attribute prompt method enables the model to acquire fine-grained semantics in the fashion domain effectively. The obvious performance gains from FashionSAP provide a new baseline for future fashion task research.
Abstract:Fine-grained supervision based on object annotations has been widely used for vision and language pre-training (VLP). However, in real-world application scenarios, aligned multi-modal data is usually in the image-caption format, which only provides coarse-grained supervision. It is cost-expensive to collect object annotations and build object annotation pre-extractor for different scenarios. In this paper, we propose a fine-grained self-supervision signal without object annotations from a replacement perspective. First, we propose a homonym sentence rewriting (HSR) algorithm to provide token-level supervision. The algorithm replaces a verb/noun/adjective/quantifier word of the caption with its homonyms from WordNet. Correspondingly, we propose a replacement vision-language modeling (RVLM) framework to exploit the token-level supervision. Two replaced modeling tasks, i.e., replaced language contrastive (RLC) and replaced language modeling (RLM), are proposed to learn the fine-grained alignment. Extensive experiments on several downstream tasks demonstrate the superior performance of the proposed method.
Abstract:Existing anchor-base oriented object detection methods have achieved amazing results, but these methods require some manual preset boxes, which introduces additional hyperparameters and calculations. The existing anchor-free methods usually have complex architectures and are not easy to deploy. Our goal is to propose an algorithm which is simple and easy-to-deploy for aerial image detection. In this paper, we present a one-stage anchor-free rotated object detector (FCOSR) based on FCOS, which can be deployed on most platforms. The FCOSR has a simple architecture consisting of only convolution layers. Our work focuses on the label assignment strategy for the training phase. We use ellipse center sampling method to define a suitable sampling region for oriented bounding box (OBB). The fuzzy sample assignment strategy provides reasonable labels for overlapping objects. To solve the insufficient sampling problem, a multi-level sampling module is designed. These strategies allocate more appropriate labels to training samples. Our algorithm achieves 79.25, 75.41, and 90.15 mAP on DOTA1.0, DOTA1.5, and HRSC2016 datasets, respectively. FCOSR demonstrates superior performance to other methods in single-scale evaluation. We convert a lightweight FCOSR model to TensorRT format, which achieves 73.93 mAP on DOTA1.0 at a speed of 10.68 FPS on Jetson Xavier NX with single scale. The code is available at: https://github.com/lzh420202/FCOSR
Abstract:Vision-language transformers (VL transformers) have shown impressive accuracy in cross-modal retrieval. However, most of the existing VL transformers use early-interaction dataflow that computes a joint representation for the text-image input. In the retrieval stage, such models need to infer on all the matched text-image combinations, which causes high computing costs. The goal of this paper is to decompose the early-interaction dataflow inside the pre-trained VL transformer to achieve acceleration while maintaining its outstanding accuracy. To achieve this, we propose a novel Vision-language Transformer Decomposing (VLDeformer) to modify the VL transformer as an individual encoder for a single image or text through contrastive learning, which accelerates retrieval speed by thousands of times. Meanwhile, we propose to compose bi-modal hard negatives for the contrastive learning objective, which enables the VLDeformer to maintain the outstanding accuracy of the backbone VL transformer. Extensive experiments on COCO and Flickr30k datasets demonstrate the superior performance of the proposed method. Considering both effectiveness and efficiency, VLDeformer provides a superior selection for cross-modal retrieval in the similar pre-training datascale.
Abstract:When estimating the relevancy between a query and a document, ranking models largely neglect the mutual information among documents. A common wisdom is that if two documents are similar in terms of the same query, they are more likely to have similar relevance score. To mitigate this problem, in this paper, we propose a multi-agent reinforced ranking model, named MarlRank. In particular, by considering each document as an agent, we formulate the ranking process as a multi-agent Markov Decision Process (MDP), where the mutual interactions among documents are incorporated in the ranking process. To compute the ranking list, each document predicts its relevance to a query considering not only its own query-document features but also its similar documents features and actions. By defining reward as a function of NDCG, we can optimize our model directly on the ranking performance measure. Our experimental results on two LETOR benchmark datasets show that our model has significant performance gains over the state-of-art baselines. We also find that the NDCG shows an overall increasing trend along with the step of interactions, which demonstrates that the mutual information among documents helps improve the ranking performance.