Abstract:Adversarial attacks pose significant threats to the reliability and safety of deep learning models, especially in critical domains such as medical imaging. This paper introduces a novel framework that integrates conformal prediction with game-theoretic defensive strategies to enhance model robustness against both known and unknown adversarial perturbations. We address three primary research questions: constructing valid and efficient conformal prediction sets under known attacks (RQ1), ensuring coverage under unknown attacks through conservative thresholding (RQ2), and determining optimal defensive strategies within a zero-sum game framework (RQ3). Our methodology involves training specialized defensive models against specific attack types and employing maximum and minimum classifiers to aggregate defenses effectively. Extensive experiments conducted on the MedMNIST datasets, including PathMNIST, OrganAMNIST, and TissueMNIST, demonstrate that our approach maintains high coverage guarantees while minimizing prediction set sizes. The game-theoretic analysis reveals that the optimal defensive strategy often converges to a singular robust model, outperforming uniform and simple strategies across all evaluated datasets. This work advances the state-of-the-art in uncertainty quantification and adversarial robustness, providing a reliable mechanism for deploying deep learning models in adversarial environments.
Abstract:Dense Retrieval (DR) is now considered as a promising tool to enhance the memorization capacity of Large Language Models (LLM) such as GPT3 and GPT-4 by incorporating external memories. However, due to the paradigm discrepancy between text generation of LLM and DR, it is still an open challenge to integrate the retrieval and generation tasks in a shared LLM. In this paper, we propose an efficient LLM-Oriented Retrieval Tuner, namely LMORT, which decouples DR capacity from base LLM and non-invasively coordinates the optimally aligned and uniform layers of the LLM towards a unified DR space, achieving an efficient and effective DR without tuning the LLM itself. The extensive experiments on six BEIR datasets show that our approach could achieve competitive zero-shot retrieval performance compared to a range of strong DR models while maintaining the generation ability of LLM.
Abstract:Few-shot dense retrieval (DR) aims to effectively generalize to novel search scenarios by learning a few samples. Despite its importance, there is little study on specialized datasets and standardized evaluation protocols. As a result, current methods often resort to random sampling from supervised datasets to create "few-data" setups and employ inconsistent training strategies during evaluations, which poses a challenge in accurately comparing recent progress. In this paper, we propose a customized FewDR dataset and a unified evaluation benchmark. Specifically, FewDR employs class-wise sampling to establish a standardized "few-shot" setting with finely-defined classes, reducing variability in multiple sampling rounds. Moreover, the dataset is disjointed into base and novel classes, allowing DR models to be continuously trained on ample data from base classes and a few samples in novel classes. This benchmark eliminates the risk of novel class leakage, providing a reliable estimation of the DR model's few-shot ability. Our extensive empirical results reveal that current state-of-the-art DR models still face challenges in the standard few-shot scene. Our code and data will be open-sourced at https://github.com/OpenMatch/ANCE-Tele.
Abstract:Data-driven modeling approaches can produce fast surrogates to study large-scale physics problems. Among them, graph neural networks (GNNs) that operate on mesh-based data are desirable because they possess inductive biases that promote physical faithfulness, but hardware limitations have precluded their application to large computational domains. We show that it is \textit{possible} to train a class of GNN surrogates on 3D meshes. We scale MeshGraphNets (MGN), a subclass of GNNs for mesh-based physics modeling, via our domain decomposition approach to facilitate training that is mathematically equivalent to training on the whole domain under certain conditions. With this, we were able to train MGN on meshes with \textit{millions} of nodes to generate computational fluid dynamics (CFD) simulations. Furthermore, we show how to enhance MGN via higher-order numerical integration, which can reduce MGN's error and training time. We validated our methods on an accompanying dataset of 3D $\text{CO}_2$-capture CFD simulations on a 3.1M-node mesh. This work presents a practical path to scaling MGN for real-world applications.
Abstract:In this paper, we investigate the instability in the standard dense retrieval training, which iterates between model training and hard negative selection using the being-trained model. We show the catastrophic forgetting phenomena behind the training instability, where models learn and forget different negative groups during training iterations. We then propose ANCE-Tele, which accumulates momentum negatives from past iterations and approximates future iterations using lookahead negatives, as "teleportations" along the time axis to smooth the learning process. On web search and OpenQA, ANCE-Tele outperforms previous state-of-the-art systems of similar size, eliminates the dependency on sparse retrieval negatives, and is competitive among systems using significantly more (50x) parameters. Our analysis demonstrates that teleportation negatives reduce catastrophic forgetting and improve convergence speed for dense retrieval training. Our code is available at https://github.com/OpenMatch/ANCE-Tele.
Abstract:The CO2 capture efficiency in solvent-based carbon capture systems (CCSs) critically depends on the gas-solvent interfacial area (IA), making maximization of IA a foundational challenge in CCS design. While the IA associated with a particular CCS design can be estimated via a computational fluid dynamics (CFD) simulation, using CFD to derive the IAs associated with numerous CCS designs is prohibitively costly. Fortunately, previous works such as Deep Fluids (DF) (Kim et al., 2019) show that large simulation speedups are achievable by replacing CFD simulators with neural network (NN) surrogates that faithfully mimic the CFD simulation process. This raises the possibility of a fast, accurate replacement for a CFD simulator and therefore efficient approximation of the IAs required by CCS design optimization. Thus, here, we build on the DF approach to develop surrogates that can successfully be applied to our complex carbon-capture CFD simulations. Our optimized DF-style surrogates produce large speedups (4000x) while obtaining IA relative errors as low as 4% on unseen CCS configurations that lie within the range of training configurations. This hints at the promise of NN surrogates for our CCS design optimization problem. Nonetheless, DF has inherent limitations with respect to CCS design (e.g., limited transferability of trained models to new CCS packings). We conclude with ideas to address these challenges.
Abstract:Illegal vehicle parking is a common urban problem faced by major cities in the world, as it incurs traffic jams, which lead to air pollution and traffic accidents. The government highly relies on active human efforts to detect illegal parking events. However, such an approach is extremely ineffective to cover a large city since the police have to patrol over the entire city roads. The massive and high-quality sharing bike trajectories from Mobike offer us a unique opportunity to design a ubiquitous illegal parking detection approach, as most of the illegal parking events happen at curbsides and have significant impact on the bike users. The detection result can guide the patrol schedule, i.e. send the patrol policemen to the region with higher illegal parking risks, and further improve the patrol efficiency. Inspired by this idea, three main components are employed in the proposed framework: 1)~{\em trajectory pre-processing}, which filters outlier GPS points, performs map-matching, and builds trajectory indexes; 2)~{\em illegal parking detection}, which models the normal trajectories, extracts features from the evaluation trajectories, and utilizes a distribution test-based method to discover the illegal parking events; and 3)~{\em patrol scheduling}, which leverages the detection result as reference context, and models the scheduling task as a multi-agent reinforcement learning problem to guide the patrol police. Finally, extensive experiments are presented to validate the effectiveness of illegal parking detection, as well as the improvement of patrol efficiency.
Abstract:People often refer to a place of interest (POI) by an alias. In e-commerce scenarios, the POI alias problem affects the quality of the delivery address of online orders, bringing substantial challenges to intelligent logistics systems and market decision-making. Labeling the aliases of POIs involves heavy human labor, which is inefficient and expensive. Inspired by the observation that the users' GPS locations are highly related to their delivery address, we propose a ubiquitous alias discovery framework. Firstly, for each POI name in delivery addresses, the location data of its associated users, namely Mobility Profile are extracted. Then, we identify the alias relationship by modeling the similarity of mobility profiles. Comprehensive experiments on the large-scale location data and delivery address data from JD logistics validate the effectiveness.
Abstract:Flexible manufacturing in the process industry requires control systems to achieve time-varying setpoints (e.g., product specifications) based on market demand. Contraction theory provides a useful framework for reference-independent system analysis and tracking control for nonlinear systems. However, determination of the control contraction metrics and control laws can be very difficult for general nonlinear systems. This work develops an approach to discrete-time contraction analysis and control using neural networks. The methodology involves training a neural network to learn a contraction metric and feedback gain. The resulting contraction-based controller embeds the trained neural network and is capable of achieving efficient tracking of time-varying references, with a full range of model uncertainty, without the need for controller structure redesign. This is a robust approach that can deal with bounded parametric uncertainties in the process model, which are commonly encountered in industrial (chemical) processes. Simulation examples are provided to illustrate the above approach.
Abstract:Neural Information Retrieval (Neu-IR) models have shown their effectiveness and thrive from end-to-end training with massive high-quality relevance labels. Nevertheless, relevance labels at such quantity are luxury and unavailable in many ranking scenarios, for example, in biomedical search. This paper improves Neu-IR in such few-shot search scenarios by meta-adaptively training neural rankers with synthetic weak supervision. We first leverage contrastive query generation (ContrastQG) to synthesize more informative queries as in-domain weak relevance labels, and then filter them with meta adaptive learning to rank (MetaLTR) to better generalize neural rankers to the target few-shot domain. Experiments on three different search domains: web, news, and biomedical, demonstrate significantly improved few-shot accuracy of neural rankers with our weak supervision framework. The code of this paper will be open-sourced.