Abstract:Satellite imagery, due to its long-range imaging, brings with it a variety of scale-preferred tasks, such as the detection of tiny/small objects, making the precise localization and detection of small objects of interest a challenging task. In this article, we design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction. Renormalized connection (RC) on the KDN enables ``synergistic focusing'' of multi-scale features. Based on our observations of KDN, we abstract a class of RCs with different connection strengths, called n21C, and generalize it to FPN-based multi-branch detectors. In a series of FPN experiments on the scale-preferred tasks, we found that the ``divide-and-conquer'' idea of FPN severely hampers the detector's learning in the right direction due to the large number of large-scale negative samples and interference from background noise. Moreover, these negative samples cannot be eliminated by the focal loss function. The RCs extends the multi-level feature's ``divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks, and enables synergistic effects of multi-level features on the specific learning goal. In addition, interference activations in two aspects are greatly reduced and the detector learns in a more correct direction. Extensive experiments of 17 well-designed detection architectures embedded with n21s on five different levels of scale-preferred tasks validate the effectiveness and efficiency of the RCs. Especially the simplest linear form of RC, E421C performs well in all tasks and it satisfies the scaling property of RGT. We hope that our approach will transfer a large number of well-designed detectors from the computer vision community to the remote sensing community.
Abstract:To overcome the inherent domain gap between remote sensing (RS) images and natural images, some self-supervised representation learning methods have made promising progress. However, they have overlooked the diverse angles present in RS objects. This paper proposes the Masked Angle-Aware Autoencoder (MA3E) to perceive and learn angles during pre-training. We design a \textit{scaling center crop} operation to create the rotated crop with random orientation on each original image, introducing the explicit angle variation. MA3E inputs this composite image while reconstruct the original image, aiming to effectively learn rotation-invariant representations by restoring the angle variation introduced on the rotated crop. To avoid biases caused by directly reconstructing the rotated crop, we propose an Optimal Transport (OT) loss that automatically assigns similar original image patches to each rotated crop patch for reconstruction. MA3E demonstrates more competitive performance than existing pre-training methods on seven different RS image datasets in three downstream tasks.
Abstract:Capturing the dependencies between joints is critical in skeleton-based action recognition task. Transformer shows great potential to model the correlation of important joints. However, the existing Transformer-based methods cannot capture the correlation of different joints between frames, which the correlation is very useful since different body parts (such as the arms and legs in "long jump") between adjacent frames move together. Focus on this problem, A novel spatio-temporal tuples Transformer (STTFormer) method is proposed. The skeleton sequence is divided into several parts, and several consecutive frames contained in each part are encoded. And then a spatio-temporal tuples self-attention module is proposed to capture the relationship of different joints in consecutive frames. In addition, a feature aggregation module is introduced between non-adjacent frames to enhance the ability to distinguish similar actions. Compared with the state-of-the-art methods, our method achieves better performance on two large-scale datasets.
Abstract:Existing anchor-base oriented object detection methods have achieved amazing results, but these methods require some manual preset boxes, which introduces additional hyperparameters and calculations. The existing anchor-free methods usually have complex architectures and are not easy to deploy. Our goal is to propose an algorithm which is simple and easy-to-deploy for aerial image detection. In this paper, we present a one-stage anchor-free rotated object detector (FCOSR) based on FCOS, which can be deployed on most platforms. The FCOSR has a simple architecture consisting of only convolution layers. Our work focuses on the label assignment strategy for the training phase. We use ellipse center sampling method to define a suitable sampling region for oriented bounding box (OBB). The fuzzy sample assignment strategy provides reasonable labels for overlapping objects. To solve the insufficient sampling problem, a multi-level sampling module is designed. These strategies allocate more appropriate labels to training samples. Our algorithm achieves 79.25, 75.41, and 90.15 mAP on DOTA1.0, DOTA1.5, and HRSC2016 datasets, respectively. FCOSR demonstrates superior performance to other methods in single-scale evaluation. We convert a lightweight FCOSR model to TensorRT format, which achieves 73.93 mAP on DOTA1.0 at a speed of 10.68 FPS on Jetson Xavier NX with single scale. The code is available at: https://github.com/lzh420202/FCOSR
Abstract:Feature alignment between domains is one of the mainstream methods for Unsupervised Domain Adaptation (UDA) semantic segmentation. Existing feature alignment methods for semantic segmentation learn domain-invariant features by adversarial training to reduce domain discrepancy, but they have two limits: 1) associations among pixels are not maintained, 2) the classifier trained on the source domain couldn't adapted well to the target. In this paper, we propose a new UDA semantic segmentation approach based on domain closeness assumption to alleviate the above problems. Specifically, a prototype clustering strategy is applied to cluster pixels with the same semantic, which will better maintain associations among target domain pixels during the feature alignment. After clustering, to make the classifier more adaptive, a normalized cut loss based on the affinity graph of the target domain is utilized, which will make the decision boundary target-specific. Sufficient experiments conducted on GTA5 $\rightarrow$ Cityscapes and SYNTHIA $\rightarrow$ Cityscapes proved the effectiveness of our method, which illustrated that our results achieved the new state-of-the-art.
Abstract:Due to the limited amount and imbalanced classes of labeled training data, the conventional supervised learning can not ensure the discrimination of the learned feature for hyperspectral image (HSI) classification. In this paper, we propose a modified diversity of class probability estimation (MDCPE) with two deep neural networks to learn spectral-spatial feature for HSI classification. In co-training phase, recurrent neural network (RNN) and convolutional neural network (CNN) are utilized as two learners to extract features from labeled and unlabeled data. Based on the extracted features, MDCPE selects most credible samples to update initial labeled data by combining k-means clustering with the traditional diversity of class probability estimation (DCPE) co-training. In this way, MDCPE can keep new labeled data class-balanced and extract discriminative features for both the minority and majority classes. During testing process, classification results are acquired by co-decision of the two learners. Experimental results demonstrate that the proposed semi-supervised co-training method can make full use of unlabeled information to enhance generality of the learners and achieve favorable accuracies on all three widely used data sets: Salinas, Pavia University and Pavia Center.
Abstract:This paper develops a novel iterative framework for subspace clustering in a learned discriminative feature domain. This framework consists of two modules of fuzzy sparse subspace clustering and discriminative transformation learning. In the first module, fuzzy latent labels containing discriminative information and latent representations capturing the subspace structure will be simultaneously evaluated in a feature domain. Then the linear transforming operator with respect to the feature domain will be successively updated in the second module with the advantages of more discrimination, subspace structure preservation and robustness to outliers. These two modules will be alternatively carried out and both theoretical analysis and empirical evaluations will demonstrate its effectiveness and superiorities. In particular, experimental results on three benchmark databases for subspace clustering clearly illustrate that the proposed framework can achieve significant improvements than other state-of-the-art approaches in terms of clustering accuracy.
Abstract:Linear synthesis model based dictionary learning framework has achieved remarkable performances in image classification in the last decade. Behaved as a generative feature model, it however suffers from some intrinsic deficiencies. In this paper, we propose a novel parametric nonlinear analysis cosparse model (NACM) with which a unique feature vector will be much more efficiently extracted. Additionally, we derive a deep insight to demonstrate that NACM is capable of simultaneously learning the task adapted feature transformation and regularization to encode our preferences, domain prior knowledge and task oriented supervised information into the features. The proposed NACM is devoted to the classification task as a discriminative feature model and yield a novel discriminative nonlinear analysis operator learning framework (DNAOL). The theoretical analysis and experimental performances clearly demonstrate that DNAOL will not only achieve the better or at least competitive classification accuracies than the state-of-the-art algorithms but it can also dramatically reduce the time complexities in both training and testing phases.
Abstract:Sparsity-regularized synthetic aperture radar (SAR) imaging framework has shown its remarkable performance to generate a feature enhanced high resolution image, in which a sparsity-inducing regularizer is involved by exploiting the sparsity priors of some visual features in the underlying image. However, since the simple prior of low level features are insufficient to describe different semantic contents in the image, this type of regularizer will be incapable of distinguishing between the target of interest and unconcerned background clutters. As a consequence, the features belonging to the target and clutters are simultaneously affected in the generated image without concerning their underlying semantic labels. To address this problem, we propose a novel semantic information guided framework for target oriented SAR image formation, which aims at enhancing the interested target scatters while suppressing the background clutters. Firstly, we develop a new semantics-specific regularizer for image formation by exploiting the statistical properties of different semantic categories in a target scene SAR image. In order to infer the semantic label for each pixel in an unsupervised way, we moreover induce a novel high-level prior-driven regularizer and some semantic causal rules from the prior knowledge. Finally, our regularized framework for image formation is further derived as a simple iteratively reweighted $\ell_1$ minimization problem which can be conveniently solved by many off-the-shelf solvers. Experimental results demonstrate the effectiveness and superiority of our framework for SAR image formation in terms of target enhancement and clutters suppression, compared with the state of the arts. Additionally, the proposed framework opens a new direction of devoting some machine learning strategies to image formation, which can benefit the subsequent decision making tasks.