Abstract:We study source-free unsupervised domain adaptation (SFUDA) for semantic segmentation, which aims to adapt a source-trained model to the target domain without accessing the source data. Many works have been proposed to address this challenging problem, among which uncertainty-based self-training is a predominant approach. However, without comprehensive denoising mechanisms, they still largely fall into biased estimates when dealing with different domains and confirmation bias. In this paper, we observe that pseudo-label noise is mainly contained in unstable samples in which the predictions of most pixels undergo significant variations during self-training. Inspired by this, we propose a novel mechanism to denoise unstable samples with stable ones. Specifically, we introduce the Stable Neighbor Denoising (SND) approach, which effectively discovers highly correlated stable and unstable samples by nearest neighbor retrieval and guides the reliable optimization of unstable samples by bi-level learning. Moreover, we compensate for the stable set by object-level object paste, which can further eliminate the bias caused by less learned classes. Our SND enjoys two advantages. First, SND does not require a specific segmentor structure, endowing its universality. Second, SND simultaneously addresses the issues of class, domain, and confirmation biases during adaptation, ensuring its effectiveness. Extensive experiments show that SND consistently outperforms state-of-the-art methods in various SFUDA semantic segmentation settings. In addition, SND can be easily integrated with other approaches, obtaining further improvements.
Abstract:Presently, self-training stands as a prevailing approach in cross-domain semantic segmentation, enhancing model efficacy by training with pixels assigned with reliable pseudo-labels. However, we find two critical limitations in this paradigm. (1) The majority of reliable pixels exhibit a speckle-shaped pattern and are primarily located in the central semantic region. This presents challenges for the model in accurately learning semantics. (2) Category noise in speckle pixels is difficult to locate and correct, leading to error accumulation in self-training. To address these limitations, we propose a novel approach called Semantic Connectivity-driven pseudo-labeling (SeCo). This approach formulates pseudo-labels at the connectivity level and thus can facilitate learning structured and low-noise semantics. Specifically, SeCo comprises two key components: Pixel Semantic Aggregation (PSA) and Semantic Connectivity Correction (SCC). Initially, PSA divides semantics into 'stuff' and 'things' categories and aggregates speckled pseudo-labels into semantic connectivity through efficient interaction with the Segment Anything Model (SAM). This enables us not only to obtain accurate boundaries but also simplifies noise localization. Subsequently, SCC introduces a simple connectivity classification task, which enables locating and correcting connectivity noise with the guidance of loss distribution. Extensive experiments demonstrate that SeCo can be flexibly applied to various cross-domain semantic segmentation tasks, including traditional unsupervised, source-free, and black-box domain adaptation, significantly improving the performance of existing state-of-the-art methods. The code is available at https://github.com/DZhaoXd/SeCo.
Abstract:The scientific outcomes of the 2022 Landslide4Sense (L4S) competition organized by the Institute of Advanced Research in Artificial Intelligence (IARAI) are presented here. The objective of the competition is to automatically detect landslides based on large-scale multiple sources of satellite imagery collected globally. The 2022 L4S aims to foster interdisciplinary research on recent developments in deep learning (DL) models for the semantic segmentation task using satellite imagery. In the past few years, DL-based models have achieved performance that meets expectations on image interpretation, due to the development of convolutional neural networks (CNNs). The main objective of this article is to present the details and the best-performing algorithms featured in this competition. The winning solutions are elaborated with state-of-the-art models like the Swin Transformer, SegFormer, and U-Net. Advanced machine learning techniques and strategies such as hard example mining, self-training, and mix-up data augmentation are also considered. Moreover, we describe the L4S benchmark data set in order to facilitate further comparisons, and report the results of the accuracy assessment online. The data is accessible on \textit{Future Development Leaderboard} for future evaluation at \url{https://www.iarai.ac.at/landslide4sense/challenge/}, and researchers are invited to submit more prediction results, evaluate the accuracy of their methods, compare them with those of other users, and, ideally, improve the landslide detection results reported in this article.
Abstract:Feature alignment between domains is one of the mainstream methods for Unsupervised Domain Adaptation (UDA) semantic segmentation. Existing feature alignment methods for semantic segmentation learn domain-invariant features by adversarial training to reduce domain discrepancy, but they have two limits: 1) associations among pixels are not maintained, 2) the classifier trained on the source domain couldn't adapted well to the target. In this paper, we propose a new UDA semantic segmentation approach based on domain closeness assumption to alleviate the above problems. Specifically, a prototype clustering strategy is applied to cluster pixels with the same semantic, which will better maintain associations among target domain pixels during the feature alignment. After clustering, to make the classifier more adaptive, a normalized cut loss based on the affinity graph of the target domain is utilized, which will make the decision boundary target-specific. Sufficient experiments conducted on GTA5 $\rightarrow$ Cityscapes and SYNTHIA $\rightarrow$ Cityscapes proved the effectiveness of our method, which illustrated that our results achieved the new state-of-the-art.