Abstract:Referring medical image segmentation targets delineating lesions indicated by textual descriptions. Aligning visual and textual cues is challenging due to their distinct data properties. Inspired by large-scale pre-trained vision-language models, we propose CausalCLIPSeg, an end-to-end framework for referring medical image segmentation that leverages CLIP. Despite not being trained on medical data, we enforce CLIP's rich semantic space onto the medical domain by a tailored cross-modal decoding method to achieve text-to-pixel alignment. Furthermore, to mitigate confounding bias that may cause the model to learn spurious correlations instead of meaningful causal relationships, CausalCLIPSeg introduces a causal intervention module which self-annotates confounders and excavates causal features from inputs for segmentation judgments. We also devise an adversarial min-max game to optimize causal features while penalizing confounding ones. Extensive experiments demonstrate the state-of-the-art performance of our proposed method. Code is available at https://github.com/WUTCM-Lab/CausalCLIPSeg.
Abstract:Automated radiology report generation aims to expedite the tedious and error-prone reporting process for radiologists. While recent works have made progress, learning to align medical images and textual findings remains challenging due to the relative scarcity of labeled medical data. For example, datasets for this task are much smaller than those used for image captioning in computer vision. In this work, we propose to transfer representations from CLIP, a large-scale pre-trained vision-language model, to better capture cross-modal semantics between images and texts. However, directly applying CLIP is suboptimal due to the domain gap between natural images and radiology. To enable efficient adaptation, we introduce UniCrossAdapter, lightweight adapter modules that are incorporated into CLIP and fine-tuned on the target task while keeping base parameters fixed. The adapters are distributed across modalities and their interaction to enhance vision-language alignment. Experiments on two public datasets demonstrate the effectiveness of our approach, advancing state-of-the-art in radiology report generation. The proposed transfer learning framework provides a means of harnessing semantic knowledge from large-scale pre-trained models to tackle data-scarce medical vision-language tasks. Code is available at https://github.com/chauncey-tow/MRG-CLIP.
Abstract:Video object segmentation is crucial for the efficient analysis of complex medical video data, yet it faces significant challenges in data availability and annotation. We introduce the task of one-shot medical video object segmentation, which requires separating foreground and background pixels throughout a video given only the mask annotation of the first frame. To address this problem, we propose a temporal contrastive memory network comprising image and mask encoders to learn feature representations, a temporal contrastive memory bank that aligns embeddings from adjacent frames while pushing apart distant ones to explicitly model inter-frame relationships and stores these features, and a decoder that fuses encoded image features and memory readouts for segmentation. We also collect a diverse, multi-source medical video dataset spanning various modalities and anatomies to benchmark this task. Extensive experiments demonstrate state-of-the-art performance in segmenting both seen and unseen structures from a single exemplar, showing ability to generalize from scarce labels. This highlights the potential to alleviate annotation burdens for medical video analysis. Code is available at https://github.com/MedAITech/TCMN.
Abstract:Ultrasound video classification enables automated diagnosis and has emerged as an important research area. However, publicly available ultrasound video datasets remain scarce, hindering progress in developing effective video classification models. We propose addressing this shortage by synthesizing plausible ultrasound videos from readily available, abundant ultrasound images. To this end, we introduce a latent dynamic diffusion model (LDDM) to efficiently translate static images to dynamic sequences with realistic video characteristics. We demonstrate strong quantitative results and visually appealing synthesized videos on the BUSV benchmark. Notably, training video classification models on combinations of real and LDDM-synthesized videos substantially improves performance over using real data alone, indicating our method successfully emulates dynamics critical for discrimination. Our image-to-video approach provides an effective data augmentation solution to advance ultrasound video analysis. Code is available at https://github.com/MedAITech/U_I2V.
Abstract:Few-shot video object segmentation aims to reduce annotation costs; however, existing methods still require abundant dense frame annotations for training, which are scarce in the medical domain. We investigate an extremely low-data regime that utilizes annotations from only a few video frames and leverages existing labeled images to minimize costly video annotations. Specifically, we propose a two-phase framework. First, we learn a few-shot segmentation model using labeled images. Subsequently, to improve performance without full supervision, we introduce a spatiotemporal consistency relearning approach on medical videos that enforces consistency between consecutive frames. Constraints are also enforced between the image model and relearning model at both feature and prediction levels. Experiments demonstrate the superiority of our approach over state-of-the-art few-shot segmentation methods. Our model bridges the gap between abundant annotated medical images and scarce, sparsely labeled medical videos to achieve strong video segmentation performance in this low data regime. Code is available at https://github.com/MedAITech/RAB.
Abstract:Medical ultrasound imaging is ubiquitous, but manual analysis struggles to keep pace. Automated segmentation can help but requires large labeled datasets, which are scarce. Semi-supervised learning leveraging both unlabeled and limited labeled data is a promising approach. State-of-the-art methods use consistency regularization or pseudo-labeling but grow increasingly complex. Without sufficient labels, these models often latch onto artifacts or allow anatomically implausible segmentations. In this paper, we present a simple yet effective pseudo-labeling method with an adversarially learned shape prior to regularize segmentations. Specifically, we devise an encoder-twin-decoder network where the shape prior acts as an implicit shape model, penalizing anatomically implausible but not ground-truth-deviating predictions. Without bells and whistles, our simple approach achieves state-of-the-art performance on two benchmarks under different partition protocols. We provide a strong baseline for future semi-supervised medical image segmentation. Code is available at https://github.com/WUTCM-Lab/Shape-Prior-Semi-Seg.
Abstract:Unsupervised anomaly detection using deep learning has garnered significant research attention due to its broad applicability, particularly in medical imaging where labeled anomalous data are scarce. While earlier approaches leverage generative models like autoencoders and generative adversarial networks (GANs), they often fall short due to overgeneralization. Recent methods explore various strategies, including memory banks, normalizing flows, self-supervised learning, and knowledge distillation, to enhance discrimination. Among these, knowledge distillation, particularly reverse distillation, has shown promise. Following this paradigm, we propose a novel scale-aware contrastive reverse distillation model that addresses two key limitations of existing reverse distillation methods: insufficient feature discriminability and inability to handle anomaly scale variations. Specifically, we introduce a contrastive student-teacher learning approach to derive more discriminative representations by generating and exploring out-of-normal distributions. Further, we design a scale adaptation mechanism to softly weight contrastive distillation losses at different scales to account for the scale variation issue. Extensive experiments on benchmark datasets demonstrate state-of-the-art performance, validating the efficacy of the proposed method. Code is available at https://github.com/MedAITech/SCRD4AD.
Abstract:Cell counting in microscopy images is vital in medicine and biology but extremely tedious and time-consuming to perform manually. While automated methods have advanced in recent years, state-of-the-art approaches tend to increasingly complex model designs. In this paper, we propose a conceptually simple yet effective decoupled learning scheme for automated cell counting, consisting of separate counter and localizer networks. In contrast to jointly learning counting and density map estimation, we show that decoupling these objectives surprisingly improves results. The counter operates on intermediate feature maps rather than pixel space to leverage global context and produce count estimates, while also generating coarse density maps. The localizer then reconstructs high-resolution density maps that precisely localize individual cells, conditional on the original images and coarse density maps from the counter. Besides, to boost counting accuracy, we further introduce a global message passing module to integrate cross-region patterns. Extensive experiments on four datasets demonstrate that our approach, despite its simplicity, challenges common practice and achieves state-of-the-art performance by significant margins. Our key insight is that decoupled learning alleviates the need to learn counting on high-resolution density maps directly, allowing the model to focus on global features critical for accurate estimates. Code is available at https://github.com/MedAITech/DCL.
Abstract:In this work, we address the challenge of adaptive pediatric Left Ventricular Ejection Fraction (LVEF) assessment. While Test-time Training (TTT) approaches show promise for this task, they suffer from two significant limitations. Existing TTT works are primarily designed for classification tasks rather than continuous value regression, and they lack mechanisms to handle the quasi-periodic nature of cardiac signals. To tackle these issues, we propose a novel \textbf{Q}uasi-\textbf{P}eriodic \textbf{A}daptive \textbf{R}egression with \textbf{T}est-time Training (Q-PART) framework. In the training stage, the proposed Quasi-Period Network decomposes the echocardiogram into periodic and aperiodic components within latent space by combining parameterized helix trajectories with Neural Controlled Differential Equations. During inference, our framework further employs a variance minimization strategy across image augmentations that simulate common quality issues in echocardiogram acquisition, along with differential adaptation rates for periodic and aperiodic components. Theoretical analysis is provided to demonstrate that our variance minimization objective effectively bounds the regression error under mild conditions. Furthermore, extensive experiments across three pediatric age groups demonstrate that Q-PART not only significantly outperforms existing approaches in pediatric LVEF prediction, but also exhibits strong clinical screening capability with high mAUROC scores (up to 0.9747) and maintains gender-fair performance across all metrics, validating its robustness and practical utility in pediatric echocardiography analysis.
Abstract:Earth Observation (EO) data analysis has been significantly revolutionized by deep learning (DL), with applications typically limited to grid-like data structures. Graph Neural Networks (GNNs) emerge as an important innovation, propelling DL into the non-Euclidean domain. Naturally, GNNs can effectively tackle the challenges posed by diverse modalities, multiple sensors, and the heterogeneous nature of EO data. To introduce GNNs in the related domains, our review begins by offering fundamental knowledge on GNNs. Then, we summarize the generic problems in EO, to which GNNs can offer potential solutions. Following this, we explore a broad spectrum of GNNs' applications to scientific problems in Earth systems, covering areas such as weather and climate analysis, disaster management, air quality monitoring, agriculture, land cover classification, hydrological process modeling, and urban modeling. The rationale behind adopting GNNs in these fields is explained, alongside methodologies for organizing graphs and designing favorable architectures for various tasks. Furthermore, we highlight methodological challenges of implementing GNNs in these domains and possible solutions that could guide future research. While acknowledging that GNNs are not a universal solution, we conclude the paper by comparing them with other popular architectures like transformers and analyzing their potential synergies.