Abstract:An in-depth comprehension of global land cover is essential in Earth observation, forming the foundation for a multitude of applications. Although remote sensing technology has advanced rapidly, leading to a proliferation of satellite imagery, the inherent complexity of these images often makes them difficult for non-expert users to understand. Natural language, as a carrier of human knowledge, can be a bridge between common users and complicated satellite imagery. In this context, we introduce a global-scale, high-quality image-text dataset for remote sensing, providing natural language descriptions for Sentinel-2 data to facilitate the understanding of satellite imagery for common users. Specifically, we utilize Sentinel-2 data for its global coverage as the foundational image source, employing semantic segmentation labels from the European Space Agency's (ESA) WorldCover project to enrich the descriptions of land covers. By conducting in-depth semantic analysis, we formulate detailed prompts to elicit rich descriptions from ChatGPT. To enhance the dataset's quality, we introduce the manual verification process. This step involves manual inspection and correction to refine the dataset, thus significantly improving its accuracy and quality. Finally, we offer the community ChatEarthNet, a large-scale image-text dataset characterized by global coverage, high quality, wide-ranging diversity, and detailed descriptions. ChatEarthNet consists of 163,488 image-text pairs with captions generated by ChatGPT-3.5 and an additional 10,000 image-text pairs with captions generated by ChatGPT-4V(ision). This dataset has significant potential for training vision-language geo-foundation models and evaluating large vision-language models for remote sensing. The dataset will be made publicly available.
Abstract:Choosing how to encode a real-world problem as a machine learning task is an important design decision in machine learning. The task of glacier calving front modeling has often been approached as a semantic segmentation task. Recent studies have shown that combining segmentation with edge detection can improve the accuracy of calving front detectors. Building on this observation, we completely rephrase the task as a contour tracing problem and propose a model for explicit contour detection that does not incorporate any dense predictions as intermediate steps. The proposed approach, called ``Charting Outlines by Recurrent Adaptation'' (COBRA), combines Convolutional Neural Networks (CNNs) for feature extraction and active contour models for the delineation. By training and evaluating on several large-scale datasets of Greenland's outlet glaciers, we show that this approach indeed outperforms the aforementioned methods based on segmentation and edge-detection. Finally, we demonstrate that explicit contour detection has benefits over pixel-wise methods when quantifying the models' prediction uncertainties. The project page containing the code and animated model predictions can be found at \url{https://khdlr.github.io/COBRA/}.
Abstract:Localizing desired objects from remote sensing images is of great use in practical applications. Referring image segmentation, which aims at segmenting out the objects to which a given expression refers, has been extensively studied in natural images. However, almost no research attention is given to this task of remote sensing imagery. Considering its potential for real-world applications, in this paper, we introduce referring remote sensing image segmentation (RRSIS) to fill in this gap and make some insightful explorations. Specifically, we create a new dataset, called RefSegRS, for this task, enabling us to evaluate different methods. Afterward, we benchmark referring image segmentation methods of natural images on the RefSegRS dataset and find that these models show limited efficacy in detecting small and scattered objects. To alleviate this issue, we propose a language-guided cross-scale enhancement (LGCE) module that utilizes linguistic features to adaptively enhance multi-scale visual features by integrating both deep and shallow features. The proposed dataset, benchmarking results, and the designed LGCE module provide insights into the design of a better RRSIS model. We will make our dataset and code publicly available.
Abstract:The Visual Question Answering (VQA) system offers a user-friendly interface and enables human-computer interaction. However, VQA models commonly face the challenge of language bias, resulting from the learned superficial correlation between questions and answers. To address this issue, in this study, we present a novel framework to reduce the language bias of the VQA for remote sensing data (RSVQA). Specifically, we add an adversarial branch to the original VQA framework. Based on the adversarial branch, we introduce two regularizers to constrain the training process against language bias. Furthermore, to evaluate the performance in terms of language bias, we propose a new metric that combines standard accuracy with the performance drop when incorporating question and random image information. Experimental results demonstrate the effectiveness of our method. We believe that our method can shed light on future work for reducing language bias on the RSVQA task.
Abstract:Geometric information in the normalized digital surface models (nDSM) is highly correlated with the semantic class of the land cover. Exploiting two modalities (RGB and nDSM (height)) jointly has great potential to improve the segmentation performance. However, it is still an under-explored field in remote sensing due to the following challenges. First, the scales of existing datasets are relatively small and the diversity of existing datasets is limited, which restricts the ability of validation. Second, there is a lack of unified benchmarks for performance assessment, which leads to difficulties in comparing the effectiveness of different models. Last, sophisticated multi-modal semantic segmentation methods have not been deeply explored for remote sensing data. To cope with these challenges, in this paper, we introduce a new remote-sensing benchmark dataset for multi-modal semantic segmentation based on RGB-Height (RGB-H) data. Towards a fair and comprehensive analysis of existing methods, the proposed benchmark consists of 1) a large-scale dataset including co-registered RGB and nDSM pairs and pixel-wise semantic labels; 2) a comprehensive evaluation and analysis of existing multi-modal fusion strategies for both convolutional and Transformer-based networks on remote sensing data. Furthermore, we propose a novel and effective Transformer-based intermediary multi-modal fusion (TIMF) module to improve the semantic segmentation performance through adaptive token-level multi-modal fusion.The designed benchmark can foster future research on developing new methods for multi-modal learning on remote sensing data. Extensive analyses of those methods are conducted and valuable insights are provided through the experimental results. Code for the benchmark and baselines can be accessed at \url{https://github.com/EarthNets/RSI-MMSegmentation}.
Abstract:Aiming at answering questions based on the content of remotely sensed images, visual question answering for remote sensing data (RSVQA) has attracted much attention nowadays. However, previous works in RSVQA have focused little on the robustness of RSVQA. As we aim to enhance the reliability of RSVQA models, how to learn robust representations against new words and different question templates with the same meaning is the key challenge. With the proposed augmented dataset, we are able to obtain more questions in addition to the original ones with the same meaning. To make better use of this information, in this study, we propose a contrastive learning strategy for training robust RSVQA models against diverse question templates and words. Experimental results demonstrate that the proposed augmented dataset is effective in improving the robustness of the RSVQA model. In addition, the contrastive learning strategy performs well on the low resolution (LR) dataset.
Abstract:Unmanned aerial vehicles (UAVs) are widely applied for purposes of inspection, search, and rescue operations by the virtue of low-cost, large-coverage, real-time, and high-resolution data acquisition capacities. Massive volumes of aerial videos are produced in these processes, in which normal events often account for an overwhelming proportion. It is extremely difficult to localize and extract abnormal events containing potentially valuable information from long video streams manually. Therefore, we are dedicated to developing anomaly detection methods to solve this issue. In this paper, we create a new dataset, named DroneAnomaly, for anomaly detection in aerial videos. This dataset provides 37 training video sequences and 22 testing video sequences from 7 different realistic scenes with various anomalous events. There are 87,488 color video frames (51,635 for training and 35,853 for testing) with the size of $640 \times 640$ at 30 frames per second. Based on this dataset, we evaluate existing methods and offer a benchmark for this task. Furthermore, we present a new baseline model, ANomaly Detection with Transformers (ANDT), which treats consecutive video frames as a sequence of tubelets, utilizes a Transformer encoder to learn feature representations from the sequence, and leverages a decoder to predict the next frame. Our network models normality in the training phase and identifies an event with unpredictable temporal dynamics as an anomaly in the test phase. Moreover, To comprehensively evaluate the performance of our proposed method, we use not only our Drone-Anomaly dataset but also another dataset. We will make our dataset and code publicly available. A demo video is available at https://youtu.be/ancczYryOBY. We make our dataset and code publicly available .
Abstract:Unmanned aerial vehicles (UAVs) are now widely applied to data acquisition due to its low cost and fast mobility. With the increasing volume of aerial videos, the demand for automatically parsing these videos is surging. To achieve this, current researches mainly focus on extracting a holistic feature with convolutions along both spatial and temporal dimensions. However, these methods are limited by small temporal receptive fields and cannot adequately capture long-term temporal dependencies which are important for describing complicated dynamics. In this paper, we propose a novel deep neural network, termed FuTH-Net, to model not only holistic features, but also temporal relations for aerial video classification. Furthermore, the holistic features are refined by the multi-scale temporal relations in a novel fusion module for yielding more discriminative video representations. More specially, FuTH-Net employs a two-pathway architecture: (1) a holistic representation pathway to learn a general feature of both frame appearances and shortterm temporal variations and (2) a temporal relation pathway to capture multi-scale temporal relations across arbitrary frames, providing long-term temporal dependencies. Afterwards, a novel fusion module is proposed to spatiotemporal integrate the two features learned from the two pathways. Our model is evaluated on two aerial video classification datasets, ERA and Drone-Action, and achieves the state-of-the-art results. This demonstrates its effectiveness and good generalization capacity across different recognition tasks (event classification and human action recognition). To facilitate further research, we release the code at https://gitlab.lrz.de/ai4eo/reasoning/futh-net.
Abstract:In deep learning research, self-supervised learning (SSL) has received great attention triggering interest within both the computer vision and remote sensing communities. While there has been a big success in computer vision, most of the potential of SSL in the domain of earth observation remains locked. In this paper, we provide an introduction to, and a review of the concepts and latest developments in SSL for computer vision in the context of remote sensing. Further, we provide a preliminary benchmark of modern SSL algorithms on popular remote sensing datasets, verifying the potential of SSL in remote sensing and providing an extended study on data augmentations. Finally, we identify a list of promising directions of future research in SSL for earth observation (SSL4EO) to pave the way for fruitful interaction of both domains.
Abstract:Deep learning has proven to be a very effective approach for Hyperspectral Image (HSI) classification. However, deep neural networks require large annotated datasets to generalize well. This limits the applicability of deep learning for HSI classification, where manually labelling thousands of pixels for every scene is impractical. In this paper, we propose to leverage Self Supervised Learning (SSL) for HSI classification. We show that by pre-training an encoder on unlabeled pixels using Barlow-Twins, a state-of-the-art SSL algorithm, we can obtain accurate models with a handful of labels. Experimental results demonstrate that this approach significantly outperforms vanilla supervised learning.