https://github.com/MedAITech/DCL.
Cell counting in microscopy images is vital in medicine and biology but extremely tedious and time-consuming to perform manually. While automated methods have advanced in recent years, state-of-the-art approaches tend to increasingly complex model designs. In this paper, we propose a conceptually simple yet effective decoupled learning scheme for automated cell counting, consisting of separate counter and localizer networks. In contrast to jointly learning counting and density map estimation, we show that decoupling these objectives surprisingly improves results. The counter operates on intermediate feature maps rather than pixel space to leverage global context and produce count estimates, while also generating coarse density maps. The localizer then reconstructs high-resolution density maps that precisely localize individual cells, conditional on the original images and coarse density maps from the counter. Besides, to boost counting accuracy, we further introduce a global message passing module to integrate cross-region patterns. Extensive experiments on four datasets demonstrate that our approach, despite its simplicity, challenges common practice and achieves state-of-the-art performance by significant margins. Our key insight is that decoupled learning alleviates the need to learn counting on high-resolution density maps directly, allowing the model to focus on global features critical for accurate estimates. Code is available at