Abstract:Enforcing state-wise safety constraints is critical for the application of reinforcement learning (RL) in real-world problems, such as autonomous driving and robot manipulation. However, existing safe RL methods only enforce state-wise constraints in expectation or enforce hard state-wise constraints with strong assumptions. The former does not exclude the probability of safety violations, while the latter is impractical. Our insight is that although it is intractable to guarantee hard state-wise constraints in a model-free setting, we can enforce state-wise safety with high probability while excluding strong assumptions. To accomplish the goal, we propose Absolute State-wise Constrained Policy Optimization (ASCPO), a novel general-purpose policy search algorithm that guarantees high-probability state-wise constraint satisfaction for stochastic systems. We demonstrate the effectiveness of our approach by training neural network policies for extensive robot locomotion tasks, where the agent must adhere to various state-wise safety constraints. Our results show that ASCPO significantly outperforms existing methods in handling state-wise constraints across challenging continuous control tasks, highlighting its potential for real-world applications.
Abstract:Recent foundation models are capable of handling multiple machine learning (ML) tasks and multiple data modalities with the unified base model structure and several specialized model components. However, the development of such multi-task (MT) multi-modal (MM) models poses significant model management challenges to existing training systems. Due to the sophisticated model architecture and the heterogeneous workloads of different ML tasks and data modalities, training these models usually requires massive GPU resources and suffers from sub-optimal system efficiency. In this paper, we investigate how to achieve high-performance training of large-scale MT MM models through data heterogeneity-aware model management optimization. The key idea is to decompose the model execution into stages and address the joint optimization problem sequentially, including both heterogeneity-aware workload parallelization and dependency-driven execution scheduling. Based on this, we build a prototype system and evaluate it on various large MT MM models. Experiments demonstrate the superior performance and efficiency of our system, with speedup ratio up to 71% compared to state-of-the-art training systems.
Abstract:Dynamic activation (DA) techniques, such as DejaVu and MoEfication, have demonstrated their potential to significantly enhance the inference efficiency of large language models (LLMs). However, these techniques often rely on ReLU activation functions or require additional parameters and training to maintain performance. This paper introduces a training-free Threshold-based Dynamic Activation(TDA) method that leverage sequence information to exploit the inherent sparsity of models across various architectures. This method is designed to accelerate generation speed by 18-25\% without significantly compromising task performance, thereby addressing the limitations of existing DA techniques. Moreover, we delve into the root causes of LLM sparsity and theoretically analyze two of its critical features: history-related activation uncertainty and semantic-irrelevant activation inertia. Our comprehensive analyses not only provide a robust theoretical foundation for DA methods but also offer valuable insights to guide future research in optimizing LLMs for greater efficiency and effectiveness.
Abstract:Massive Over-activation Yielded Uplifts(MOYU) is an inherent property of large language models, and dynamic activation(DA) based on the MOYU property is a clever yet under-explored strategy designed to accelerate inference in these models. Existing methods that utilize MOYU often face a significant 'Impossible Trinity': struggling to simultaneously maintain model performance, enhance inference speed, and extend applicability across various architectures. Due to the theoretical ambiguities surrounding MOYU, this paper elucidates the root cause of the MOYU property and outlines the mechanisms behind two primary limitations encountered by current DA methods: 1) history-related activation uncertainty, and 2) semantic-irrelevant activation inertia. Our analysis not only underscores the limitations of current dynamic activation strategies within large-scale LLaMA models but also proposes opportunities for refining the design of future sparsity schemes.
Abstract:Quantization is a proven effective method for compressing large language models. Although popular techniques like W8A8 and W4A16 effectively maintain model performance, they often fail to concurrently speed up the prefill and decoding stages of inference. W4A8 is a promising strategy to accelerate both of them while usually leads to a significant performance degradation. To address these issues, we present QQQ, a Quality Quattuor-bit Quantization method with 4-bit weights and 8-bit activations. QQQ employs adaptive smoothing and Hessian-based compensation, significantly enhancing the performance of quantized models without extensive training. Furthermore, we meticulously engineer W4A8 GEMM kernels to increase inference speed. Our specialized per-channel W4A8 GEMM and per-group W4A8 GEMM achieve impressive speed increases of 3.67$\times$ and 3.29 $\times$ over FP16 GEMM. Our extensive experiments show that QQQ achieves performance on par with existing state-of-the-art LLM quantization methods while significantly accelerating inference, achieving speed boosts up to 2.24 $\times$, 2.10$\times$, and 1.25$\times$ compared to FP16, W8A8, and W4A16, respectively.
Abstract:3D Gaussian Splatting-based techniques have recently advanced 3D scene reconstruction and novel view synthesis, achieving high-quality real-time rendering. However, these approaches are inherently limited by the underlying pinhole camera assumption in modeling the images and hence only work for All-in-Focus (AiF) sharp image inputs. This severely affects their applicability in real-world scenarios where images often exhibit defocus blur due to the limited depth-of-field (DOF) of imaging devices. Additionally, existing 3D Gaussian Splatting (3DGS) methods also do not support rendering of DOF effects. To address these challenges, we introduce DOF-GS that allows for rendering adjustable DOF effects, removing defocus blur as well as refocusing of 3D scenes, all from multi-view images degraded by defocus blur. To this end, we re-imagine the traditional Gaussian Splatting pipeline by employing a finite aperture camera model coupled with explicit, differentiable defocus rendering guided by the Circle-of-Confusion (CoC). The proposed framework provides for dynamic adjustment of DOF effects by changing the aperture and focal distance of the underlying camera model on-demand. It also enables rendering varying DOF effects of 3D scenes post-optimization, and generating AiF images from defocused training images. Furthermore, we devise a joint optimization strategy to further enhance details in the reconstructed scenes by jointly optimizing rendered defocused and AiF images. Our experimental results indicate that DOF-GS produces high-quality sharp all-in-focus renderings conditioned on inputs compromised by defocus blur, with the training process incurring only a modest increase in GPU memory consumption. We further demonstrate the applications of the proposed method for adjustable defocus rendering and refocusing of the 3D scene from input images degraded by defocus blur.
Abstract:Graph clustering is a fundamental problem in machine learning. Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers. Such limitation motivates us to pose a more challenging problem of graph clustering with unknown cluster number. We propose to address this problem from a fresh perspective of graph information theory (i.e., structural information). In the literature, structural information has not yet been introduced to deep clustering, and its classic definition falls short of discrete formulation and modeling node features. In this work, we first formulate a differentiable structural information (DSI) in the continuous realm, accompanied by several theoretical results. By minimizing DSI, we construct the optimal partitioning tree where densely connected nodes in the graph tend to have the same assignment, revealing the cluster structure. DSI is also theoretically presented as a new graph clustering objective, not requiring the predefined cluster number. Furthermore, we design a neural LSEnet in the Lorentz model of hyperbolic space, where we integrate node features to structural information via manifold-valued graph convolution. Extensive empirical results on real graphs show the superiority of our approach.
Abstract:In this work, we systematically investigate the efficacy of dynamic activation mechanisms within the LLaMA family of language models. Despite the potential of dynamic activation methods to reduce computation and increase speed in models using the ReLU activation function, our empirical findings have uncovered several inherent pitfalls in the current dynamic activation schemes. Through extensive experiments across various dynamic activation strategies, we demonstrate that LLaMA models usually underperform when compared to their ReLU counterparts, particularly in scenarios demanding high sparsity ratio. We attribute these deficiencies to a combination of factors: 1) the inherent complexity of dynamically predicting activation heads and neurons; 2) the inadequate sparsity resulting from activation functions; 3) the insufficient preservation of information resulting from KV cache skipping. Our analysis not only sheds light on the limitations of dynamic activation in the context of large-scale LLaMA models but also proposes roadmaps for enhancing the design of future sparsity schemes.
Abstract:Sentence Pattern Structure (SPS) parsing is a syntactic analysis method primarily employed in language teaching.Existing SPS parsers rely heavily on textbook corpora for training, lacking cross-domain capability.To overcome this constraint, this paper proposes an innovative approach leveraging large language models (LLMs) within a self-training framework. Partial syntactic rules from a source domain are combined with target domain sentences to dynamically generate training data, enhancing the adaptability of the parser to diverse domains.Experiments conducted on textbook and news domains demonstrate the effectiveness of the proposed method, outperforming rule-based baselines by 1.68 points on F1 metrics.
Abstract:Natural Language Processing (NLP) technologies have revolutionized the way we interact with information systems, with a significant focus on converting natural language queries into formal query languages such as SQL. However, less emphasis has been placed on the Corpus Query Language (CQL), a critical tool for linguistic research and detailed analysis within text corpora. The manual construction of CQL queries is a complex and time-intensive task that requires a great deal of expertise, which presents a notable challenge for both researchers and practitioners. This paper presents the first text-to-CQL task that aims to automate the translation of natural language into CQL. We present a comprehensive framework for this task, including a specifically curated large-scale dataset and methodologies leveraging large language models (LLMs) for effective text-to-CQL task. In addition, we established advanced evaluation metrics to assess the syntactic and semantic accuracy of the generated queries. We created innovative LLM-based conversion approaches and detailed experiments. The results demonstrate the efficacy of our methods and provide insights into the complexities of text-to-CQL task.