Abstract:In this paper, we introduce DINO-X, which is a unified object-centric vision model developed by IDEA Research with the best open-world object detection performance to date. DINO-X employs the same Transformer-based encoder-decoder architecture as Grounding DINO 1.5 to pursue an object-level representation for open-world object understanding. To make long-tailed object detection easy, DINO-X extends its input options to support text prompt, visual prompt, and customized prompt. With such flexible prompt options, we develop a universal object prompt to support prompt-free open-world detection, making it possible to detect anything in an image without requiring users to provide any prompt. To enhance the model's core grounding capability, we have constructed a large-scale dataset with over 100 million high-quality grounding samples, referred to as Grounding-100M, for advancing the model's open-vocabulary detection performance. Pre-training on such a large-scale grounding dataset leads to a foundational object-level representation, which enables DINO-X to integrate multiple perception heads to simultaneously support multiple object perception and understanding tasks, including detection, segmentation, pose estimation, object captioning, object-based QA, etc. Experimental results demonstrate the superior performance of DINO-X. Specifically, the DINO-X Pro model achieves 56.0 AP, 59.8 AP, and 52.4 AP on the COCO, LVIS-minival, and LVIS-val zero-shot object detection benchmarks, respectively. Notably, it scores 63.3 AP and 56.5 AP on the rare classes of LVIS-minival and LVIS-val benchmarks, both improving the previous SOTA performance by 5.8 AP. Such a result underscores its significantly improved capacity for recognizing long-tailed objects.
Abstract:Image restoration is a classic low-level problem aimed at recovering high-quality images from low-quality images with various degradations such as blur, noise, rain, haze, etc. However, due to the inherent complexity and non-uniqueness of degradation in real-world images, it is challenging for a model trained for single tasks to handle real-world restoration problems effectively. Moreover, existing methods often suffer from over-smoothing and lack of realism in the restored results. To address these issues, we propose Diff-Restorer, a universal image restoration method based on the diffusion model, aiming to leverage the prior knowledge of Stable Diffusion to remove degradation while generating high perceptual quality restoration results. Specifically, we utilize the pre-trained visual language model to extract visual prompts from degraded images, including semantic and degradation embeddings. The semantic embeddings serve as content prompts to guide the diffusion model for generation. In contrast, the degradation embeddings modulate the Image-guided Control Module to generate spatial priors for controlling the spatial structure of the diffusion process, ensuring faithfulness to the original image. Additionally, we design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain. We conducted comprehensive qualitative and quantitative analysis on restoration tasks with different degradations, demonstrating the effectiveness and superiority of our approach.
Abstract:Realistic image restoration is a crucial task in computer vision, and the use of diffusion-based models for image restoration has garnered significant attention due to their ability to produce realistic results. However, the quality of the generated images is still a significant challenge due to the severity of image degradation and the uncontrollability of the diffusion model. In this work, we delve into the potential of utilizing pre-trained stable diffusion for image restoration and propose MRIR, a diffusion-based restoration method with multimodal insights. Specifically, we explore the problem from two perspectives: textual level and visual level. For the textual level, we harness the power of the pre-trained multimodal large language model to infer meaningful semantic information from low-quality images. Furthermore, we employ the CLIP image encoder with a designed Refine Layer to capture image details as a supplement. For the visual level, we mainly focus on the pixel level control. Thus, we utilize a Pixel-level Processor and ControlNet to control spatial structures. Finally, we integrate the aforementioned control information into the denoising U-Net using multi-level attention mechanisms and realize controllable image restoration with multimodal insights. The qualitative and quantitative results demonstrate our method's superiority over other state-of-the-art methods on both synthetic and real-world datasets.
Abstract:Recent advances in non-invasive EEG technology have broadened its application in emotion recognition, yielding a multitude of related datasets. Yet, deep learning models struggle to generalize across these datasets due to variations in acquisition equipment and emotional stimulus materials. To address the pressing need for a universal model that fluidly accommodates diverse EEG dataset formats and bridges the gap between laboratory and real-world data, we introduce a novel deep learning framework: the Contrastive Learning based Diagonal Transformer Autoencoder (CLDTA), tailored for EEG-based emotion recognition. The CLDTA employs a diagonal masking strategy within its encoder to extracts full-channel EEG data's brain network knowledge, facilitating transferability to the datasets with fewer channels. And an information separation mechanism improves model interpretability by enabling straightforward visualization of brain networks. The CLDTA framework employs contrastive learning to distill subject-independent emotional representations and uses a calibration prediction process to enable rapid adaptation of the model to new subjects with minimal samples, achieving accurate emotion recognition. Our analysis across the SEED, SEED-IV, SEED-V, and DEAP datasets highlights CLDTA's consistent performance and proficiency in detecting both task-specific and general features of EEG signals related to emotions, underscoring its potential to revolutionize emotion recognition research.
Abstract:Colorizing grayscale images offers an engaging visual experience. Existing automatic colorization methods often fail to generate satisfactory results due to incorrect semantic colors and unsaturated colors. In this work, we propose an automatic colorization pipeline to overcome these challenges. We leverage the extraordinary generative ability of the diffusion prior to synthesize color with plausible semantics. To overcome the artifacts introduced by the diffusion prior, we apply the luminance conditional guidance. Moreover, we adopt multimodal high-level semantic priors to help the model understand the image content and deliver saturated colors. Besides, a luminance-aware decoder is designed to restore details and enhance overall visual quality. The proposed pipeline synthesizes saturated colors while maintaining plausible semantics. Experiments indicate that our proposed method considers both diversity and fidelity, surpassing previous methods in terms of perceptual realism and gain most human preference.
Abstract:With the recent explosion of large language models (LLMs), such as Generative Pretrained Transformers (GPT), the need to understand the ability of humans and machines to comprehend semantic language meaning has entered a new phase. This requires interdisciplinary research that bridges the fields of cognitive science and natural language processing (NLP). This pilot study aims to provide insights into individuals' neural states during a semantic relation reading-comprehension task. We propose jointly analyzing LLMs, eye-gaze, and electroencephalographic (EEG) data to study how the brain processes words with varying degrees of relevance to a keyword during reading. We also use a feature engineering approach to improve the fixation-related EEG data classification while participants read words with high versus low relevance to the keyword. The best validation accuracy in this word-level classification is over 60\% across 12 subjects. Words of high relevance to the inference keyword had significantly more eye fixations per word: 1.0584 compared to 0.6576 when excluding no-fixation words, and 1.5126 compared to 1.4026 when including them. This study represents the first attempt to classify brain states at a word level using LLM knowledge. It provides valuable insights into human cognitive abilities and the realm of Artificial General Intelligence (AGI), and offers guidance for developing potential reading-assisted technologies.
Abstract:Recent years have witnessed increasing interest in few-shot knowledge graph completion (FKGC), which aims to infer unseen query triples for a few-shot relation using a handful of reference triples of the relation. The primary focus of existing FKGC methods lies in learning the relation representations that can reflect the common information shared by the query and reference triples. To this end, these methods learn the embeddings of entities with their direct neighbors, and use the concatenation of the entity embeddings as the relation representations. However, the entity embeddings learned only from direct neighborhoods may have low expressiveness when the entity has sparse neighbors or shares a common local neighborhood with other entities. Moreover, the embeddings of two entities are insufficient to represent the semantic information of their relationship, especially when they have multiple relations. To address these issues, we propose a Relation-Specific Context Learning (RSCL) framework, which exploits graph contexts of triples to capture the semantic information of relations and entities simultaneously. Specifically, we first extract graph contexts for each triple, which can provide long-term entity-relation dependencies. To model the graph contexts, we then develop a hierarchical relation-specific learner to learn global and local relation-specific representations for relations by capturing contextualized information of triples and incorporating local information of entities. Finally, we utilize the learned representations to predict the likelihood of the query triples. Experimental results on two public datasets demonstrate that RSCL outperforms state-of-the-art FKGC methods.
Abstract:Completion through the embedding representation of the knowledge graph (KGE) has been a research hotspot in recent years. Realistic knowledge graphs are mostly related to time, while most of the existing KGE algorithms ignore the time information. A few existing methods directly or indirectly encode the time information, ignoring the balance of timestamp distribution, which greatly limits the performance of temporal knowledge graph completion (KGC). In this paper, a temporal KGC method is proposed based on the direct encoding time information framework, and a given time slice is treated as the finest granularity for balanced timestamp distribution. A large number of experiments on temporal knowledge graph datasets extracted from the real world demonstrate the effectiveness of our method.
Abstract:Domain adaptation which pays attention to exploiting the knowledge in source domain to promote the learning tasks in target domain plays a critical role in real-world applications. Recently, lots of deep learning approaches based on autoencoders have achieved significance performance in domain adaptation. However, most existing methods focus on minimizing the distribution divergence by putting the source data and target data together to learn global feature representations, while do not take the local relationship between instances of the same category in different domains into account. To address this problem, we propose a novel Semi-Supervised Representation Learning framework via Dual Autoencoders for domain adaptation, named SSRLDA. More specifically, \textcolor{red}{we extract richer feature representations by learning the global and local feature representations simultaneously using two novel autoencoders}, which are referred to as marginalized denoising autoencoder with adaptation distribution (MDA$_{ad}$) and multi-class marginalized denoising autoencoder (MMDA) respectively. Meanwhile, we \textcolor{red}{adopt an iterative strategy} to make full use of label information to optimize feature representations. Experimental results show that our proposed approach outperforms several state-of-the-art baseline methods.