Abstract:This work focuses on building a task planner for Embodied Instruction Following (EIF) using Large Language Models (LLMs). Previous works typically train a planner to imitate expert trajectories, treating this as a supervised task. While these methods achieve competitive performance, they often lack sufficient robustness. When a suboptimal action is taken, the planner may encounter an out-of-distribution state, which can lead to task failure. In contrast, we frame the task as a Partially Observable Markov Decision Process (POMDP) and aim to develop a robust planner under a few-shot assumption. Thus, we propose a closed-loop planner with an adaptation module and a novel hindsight method, aiming to use as much information as possible to assist the planner. Our experiments on the ALFRED dataset indicate that our planner achieves competitive performance under a few-shot assumption. For the first time, our few-shot agent's performance approaches and even surpasses that of the full-shot supervised agent.
Abstract:Recent years have witnessed remarkable progress in 3D content generation. However, corresponding evaluation methods struggle to keep pace. Automatic approaches have proven challenging to align with human preferences, and the mixed comparison of text- and image-driven methods often leads to unfair evaluations. In this paper, we present a comprehensive framework to better align and evaluate multi-view diffusion models with human preferences. To begin with, we first collect and filter a standardized image prompt set from DALL$\cdot$E and Objaverse, which we then use to generate multi-view assets with several multi-view diffusion models. Through a systematic ranking pipeline on these assets, we obtain a human annotation dataset with 16k expert pairwise comparisons and train a reward model, coined MVReward, to effectively encode human preferences. With MVReward, image-driven 3D methods can be evaluated against each other in a more fair and transparent manner. Building on this, we further propose Multi-View Preference Learning (MVP), a plug-and-play multi-view diffusion tuning strategy. Extensive experiments demonstrate that MVReward can serve as a reliable metric and MVP consistently enhances the alignment of multi-view diffusion models with human preferences.
Abstract:In this paper, we explain the inference logic of large language models (LLMs) as a set of symbolic concepts. Many recent studies have discovered that traditional DNNs usually encode sparse symbolic concepts. However, because an LLM has much more parameters than traditional DNNs, whether the LLM also encodes sparse symbolic concepts is still an open problem. Therefore, in this paper, we propose to disentangle the inference score of LLMs for dialogue tasks into a small number of symbolic concepts. We verify that we can use those sparse concepts to well estimate all inference scores of the LLM on all arbitrarily masking states of the input sentence. We also evaluate the transferability of concepts encoded by an LLM and verify that symbolic concepts usually exhibit high transferability across similar input sentences. More crucially, those symbolic concepts can be used to explain the exact reasons accountable for the LLM's prediction errors.